Development of LV circuit breakers to standard IEC 947-2

E. Blanc
Cahiers Techniques are a collection of documents intended for engineers and technicians people in the industry who are looking for information in greater depth in order to complement that given in display product catalogues.

These Cahiers Techniques go beyond this stage and constitute practical training tools. They contain data allowing to design and implement electrical equipment, industrial electronics and electrical transmission and distribution. Each Cahier Technique provides an in-depth study of a precise subject in the fields of electrical networks, protection devices, monitoring and control and industrial automation systems.

The latest publications can be downloaded on Internet from the Schneider server.

code: http://www.schneiderelectric.com
section: mastering electricity
Please contact your Schneider representative if you want either a Cahier Technique or the list of available titles.

The « Cahiers Techniques » collection is part of the Groupe Schneider's « Collection Technique ».

Foreword
The author disclaims all responsibility further to incorrect use of information or diagrams reproduced in this document, and cannot be held responsible for any errors or oversights, or for the consequences of using information and diagrams contained in this document.

Reproduction of all or part of a Cahier Technique is authorised with the prior consent of the Scientific and Technical Division. The statement « Extracted from Schneider Cahier Technique no..... (please specify) » is compulsory.
Etienne BLANC

Having graduated as an IEG Engineer in 1968, he joined Merlin Gerin in 1970. For three years he was in charge of LV technical literature in the Communication Department, which he left to join the Research, Development and Quality Department where he was engaged in network research (dynamic stability, protection, discrimination, harmonic currents and security...). He moved to the Industrial Circuit breaker Department in 1983 where he now works as a Product Manager.
Development of LV circuit breakers to standard IEC 947-2

Development of the need for safety and of technologies is responsible for a marked recovery of industrial circuit breaker standard requirements (circuit breakers whose implementation is reserved for electricians).

Today, conformity with standard IEC 947-2, published in 1989 and reviewed and completed in 1995, can be considered as an « all-risks insurance » guaranteeing a circuit breaker’s fitness for use.

Quite remarkably all countries, except Japan, have approved this standard. Japan’s approval should be given in the near future.

This « Cahier Technique » presents the advantages of this standard over the former IEC 157-1, and describes the numerous tests to be satisfied by these breaking devices. These tests are highly representative of the constraints actually encountered in electrical installations.

Contents

1. Introduction
 1.1 Publication IEC 947-2 p. 5
 1.2 Stages of its application p. 6
 1.3 The main new features p. 6

2. The circuit breaker, a multi-function safety device
 2.1 Performances and new tests to ensure better protection against overcurrents p. 7
 2.2 Dielectric strength for « insulation co-ordination » p. 10
 2.3 Taking introduction of electronics into account in industrial circuit breakers p. 11
 2.4 Disconnection and residual current protection: two extra functions now recognised p. 13

3. A test standard based on reality
 3.1 Sequence tests p. 14
 3.2 Very wide sampling of circuit breakers tested p. 16

4. Practical consequences for the installation designer
 4.1 Fundamental selection criteria for circuit breakers are unchanged p. 17
 4.2 Use of « service breaking capacity » Ics p. 17
 4.3 Two devices in one: the circuit breaker-disconnector p. 18
 4.4 « All risks insurance »: conformity with IEC 947-2 p. 18

Appendix 1: main differences between IEC 157-1 and IEC 947-2 p. 20
Appendix 2: definitions and symbols according to IEC 947-2 p. 21
Appendix 3: probable Isc calculation examples p. 22
Appendix 4: standard IEC 898 for domestic circuit breakers p. 24
1 Introduction

As with all electrical devices, industrial Low Voltage circuit breakers are designed, manufactured and verified according to rules collected in the standards known as « product standards » (see fig. 1).

Each country has its own standards (UTE for France, BS for the UK, VDE for Germany, etc...), often derived from IEC (International Electrotechnical Commission) publications which have a reference purpose.

Consequently the standards covering LV industrial circuit breakers are today, in Europe as in a large number of other countries, based on the IEC 947-2 standard which, in 1989, replaced the 1973 standard IEC 157-1 (see fig. 2).

In the electrotechnical field there are two different types of standards which the various participants have to consider:

1. « product » standards
 These standards exist for each component in an electrical installation. That a product conforms to its standard is, for the user, an assurance of quality and reliability.

2. « installation » standards
 These bring together the various rules concerning the design, construction and use of an electrical installation to ensure:
 - correct supply to loads (voltage, frequency, continuity of service, ...);
 - safety of persons and equipment;
 - ... and maintenance of these requirements throughout the life of the installation.
 The IEC 364 and, in France the NF C 15-100, belong to this category.

In practice
Below is shown around the diagram of an electrical installation, first the components of this installation concerned by product standards and, second, the parameters defined or considered by installation standards.

Examples of components concerned by product standards:

- power sources;
- main distribution board (enclosure and switchgear);
- cables;
- secondary distribution board (enclosure and switchgear);
- cables;
- loads.

Main parameters defined or considered by installation standards:

- earthing system;
- current-carrying capacity;
- short-circuit current;
- insulation fault current;
- temperature;
- type and method of installation of cables;
- maximum permissible voltage drop;
- special risks (fire, vibration, explosion), discrimination;
- limits on use;
- etc.

fig. 1: Product and installation standards.

fig. 2: Map showing the influence of the various standard bodies.
1.1 Publication IEC 947-2

An extra step towards an international standard

The desire for a still wider international recognition of IEC recommendations, as well as the technical and technological progress achieved since 1973 by manufacturers, have prompted IEC sub-committee 17B to work on a revision of publication 157-1.

The work of these international experts (including three engineers from Schneider) resulted in the publication in 1989 of the first edition of standard IEC 947-2.

After a vote of approval, this gained considerable world-wide agreement (Europe, United States, Canada, Australia, South Africa...). Japan was the only exception, but should officially recognise this standard in 1997 or 1998 (see fig. 3).

IEC 947-2 is part of a much more comprehensive work: IEC 947

This work comprises seven documents which constitute the IEC standards for all Low Voltage electrical switchgear for industrial use:

- IEC 947-4-1: Contactors and motor starters (formerly IEC 158-1 and IEC 292) (published in May 1996)
- IEC 947-4-2: Semi-Conductor power controllers and starters for ac motors (published in 1995)
- IEC 947-5-1: Control circuit devices and switching elements (formerly IEC 337) (published in March 1990)
- IEC 947-5-2: Proximity detectors (published in July 1997)
- IEC 947-6-1: Automatic transfer switching equipment (published in 1989)
- IEC 947-6-2: Control and protection switching equipment (ACP) (published in August 1992)
- IEC 947-7-1: Terminal blocks for copper conductors (published in 1989)

fig. 3: Worldwide representation of IEC 947-2.
This structuring allowed homogenisation of the vocabulary and general rules of the various product families. However in order to determine all the rules relating to one category of device, two documents have to be consulted:

- a first one called « General Rules » (IEC 947-1) which contains the definitions, instructions and tests common to all industrial LV equipment,

- a second one called « Products » (IEC 947-2 to 7) which deals with the instructions and tests specific to the product concerned.

Thus the texts applicable to industrial LV circuit breakers are IEC 947-1 and IEC 947-2.

1.2 Stages of its application

In Europe

The texts published by the IEC 947 are first of all studied at the level of the European Committee for Electrotechnical Standardisation (CENELEC) which brings together the 18 countries of Western Europe.

From the basic text, CENELEC establishes whether:

- it is a European Norm « EN... » which is then ratified as a national standard by all the member countries;

- it is, in the event of technical differences, a harmonisation document « HD... » which is then transformed into a national standard with the incorporation of points specific to each country.

As far as publications IEC 947-1 and 2 are concerned, no notable differences have emerged to date. Consequently, CENELEC published in 1991 two European Norms, EN 60 947-1 and EN 60 947-2, which have been part of the national standards of the various member countries since 1992.

In the USA and Canada

Although favourable comment has been expressed, the standards in force (UL in the USA and CSA in Canada) are very different from IEC 947-2 and a reaction of conservatism, even a certain protectionism, has meant that these two countries will probably retain their specific standards for a long time yet.

In Japan

The only country to have voted in the negative. It has therefore not adopted the IEC texts and keeps its own JIS standards. However, under international pressure, this country is opening up progressively to the outside world and the IEC 947 should act as a base for a new JIS standard.

In other countries of the world

Each country can ratify the IEC text as a national standard after studying it and making any modifications necessary.

The very wide approval achieved by IEC 947-2 has meant that most countries have adopted it with very few modifications.

1.3 The main new features

First of all it is very important to note that the new texts do not change the fundamental circuit breaker selection criteria, which are still its breaking capacity and the rated current.

On the other hand, the new texts guarantee the user a better assurance of quality and performance, introducing extra tests and requirements which take into account more fully the actual operating conditions of a circuit breaker in use (see appendix 1).

Moreover, this standard recognises a circuit breaker’s ability to fulfil other functions, in addition to the usual ones of overcurrent protection, isolation, or personal protection by residual current device.
2.1 Performances and new tests to ensure better protection against overcurrents

What the user of a circuit breaker requires, above all else, is that it fulfils, without fail, its main purpose: in all circumstances and completely safely, to protect electrical installations against overcurrents whatever their values between In and the breaking capacity of the device.

In view of this need, IEC 947-2 has kept the main well-known characteristics of a circuit breaker (breaking capacity, rated current, operational voltage, etc...), but it now clarifies them and completes them with new principles and new performances (see appendix 2), as well as stipulating a whole series of tests, the severity of which guarantees its ability to break any value of current.

Clarification of breaking capacity
With IEC 157-1, for any one circuit breaker there were two breaking capacities called « P1 » and « P2 » defined both by the test cycle and the post-break requirements.

IEC 947-2 dispels this ambiguity. From now on, each circuit breaker has only one breaking capacity called Icu (ultimate breaking capacity) expressed in kA. Icu corresponds, in practice, to breaking capacity P1 in the former standard and it is defined in the same way:

\[
I_{cu} (IEC 947-2) = \text{breaking capacity P1 (IEC 157-1)}
\]

It is this characteristic which, from the design of a network, is to be compared with the three-phase short-circuit current value at the point of installation of the circuit breaker.

Icu (of the device) > three-phase Isc (of the system).

Service breaking capacity: Ics
Prospective short-circuit currents are normally calculated using extreme assumptions all aiming at increased safety. In particular:

- the short-circuit is three-phase;
- it is said to be « bolted », i.e. without arc;
- resistance of connections is not taken into account;
- the short-circuit is considered to occur at the load side terminals of the circuit breaker without intervening cables;
- cable resistances are calculated at normal operating temperatures (in overcurrent, these resistances are greater because they increase at the same time as the cables heat up).

The result is that, when a short-circuit occurs (already a very rare occurrence), its real value is lower (or even much lower in the case of terminal circuits) than the prospective Isc.

On the other hand, it is important that those currents of higher probability be disconnected under very good conditions so that after elimination of the fault, the resumption of service is sure to be quick and safe for the entire installation.

It is for this reason that IEC 947-2 introduces a new characteristic, Ics, known as « service breaking capacity », generally expressed as a percentage of Icu (value to be chosen by the manufacturer from 25, 50, 75 or 100%) defined in the following way:

- the circuit breaker carries out three successive disconnections of Ics current;
- the ability of the device to fulfil all its functions is then verified by a series of measurements (temperature rise under In, capacity to break its rated current by achieving 5% of electrical endurance, dielectric withstand, trip operation, etc...).

This establishes Ics as a performance which can be considered not simply as breaking capacity (as was the breaking capacity P2 of IEC 157-1), but as the ability of the circuit breaker to ensure completely normal service, even after having disconnected several short-circuit currents (O-CO-CO).

The short-time withstand current Icw (for category B circuit breakers)
IEC 947-2 defines two categories of circuit breakers:

- those of category A for which no short-circuit trip delay is provided. These are generally moulded case circuit breakers such as Compact NS. This requirement is not synonymous with non-discrimination on tripping (see « Cahier Technique » n° 167).
- those of category B for which, in order to achieve time discrimination, it is possible to delay tripping during short-circuit conditions with values lower than Icw. These are generally air circuit breakers (Masterpact type) and some of the higher rated moulded case circuit breakers such as Compact C1251N.

For the latter, the new IEC imposes an extra test to verify their ability to withstand, thermally and electrodynamically, the Icw current during the
associated delay, without repulsion of the contacts which would give rise to excessive wear and tear (see fig. 4).

Breaking in IT earthing system

In the IT earthing system, circuit breakers may be obliged to break with a single pole, a "double fault" current under phase-to-phase voltage (see fig. 5).

Appendix H of IEC 947-2 takes account of this type of breaking, and imposes a specific breaking test for the circuit breakers used in IT earthing systems.

Circuit breakers which have not successfully completed this test are marked with the symbol and must not be used for IT earthing systems.

Co-ordination between circuit breakers

The term co-ordination concerns the behaviour of two devices, C1 and C2, placed in series in an electrical distribution circuit.

<table>
<thead>
<tr>
<th>Permissible short-time current Icw</th>
<th>Associated delay Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>In ≤ 2500 A</td>
<td>In > 2500 A</td>
</tr>
<tr>
<td>Icw < 12 In</td>
<td></td>
</tr>
<tr>
<td>(with min. 5 kA)</td>
<td></td>
</tr>
<tr>
<td>Icw > 30 kA</td>
<td></td>
</tr>
<tr>
<td>0.05 s (minimum value)</td>
<td></td>
</tr>
<tr>
<td>0.1 s</td>
<td></td>
</tr>
<tr>
<td>0.25 s</td>
<td></td>
</tr>
<tr>
<td>0.5 s</td>
<td>(preferred values)</td>
</tr>
<tr>
<td>1 s</td>
<td></td>
</tr>
</tbody>
</table>

Example: Masterpact M20 H2

| Icw = 75 kA | 1 s |

fig. 4: Additional test for category B circuit breakers.

fig. 5: Example of "double fault" current breaking in an installation using the IT earthing system. The difference in ratings between two circuit breakers (C1 and C2) means that only one (C2) may be in a position to eliminate the fault with a single pole under phase-to-phase voltage.
with a short-circuit downstream of C2 (see fig. 6). It covers two principles:
- the first is well known: discrimination, which is an increasing requirement of modern low voltage electrical distribution systems,
- the other is less well known (although recognised in installation standards): cascading, which consists of installing a device, C2, whose breaking capacity \(I_{cu2} \) is less than the three-phase short-circuit current at its terminals \(I_{sc2} \) and which is protected or « helped » by device C1 for any current between \(I_{cu2} \) and \(I_{sc2} \) (see fig. 7). The main advantage of this technique is to be able to install at C2 a device of a lesser performance, thus more economical, without endangering the safety of the installation.

To determine and guarantee co-ordination between two circuit breakers, it is necessary to carry out a preliminary theoretical approach, and to confirm the results by means of suitable tests. This is what Merlin Gerin has always done in order to draw up tables of discrimination and cascading which are at present ratified in appendix A of IEC 947-2.

The theoretical methods or approaches are:
- for discrimination, comparing the limitation characteristics of the loadside circuit breaker with the non-tripping characteristics of the lineside device (see fig. 8). This method is very precise and requires little in the way of confirmation testing.
- for cascading, comparing the limitation characteristics of the lineside device with the maximum withstand of the loadside device (see fig. 9). As this method is much less precise, IEC 947-2 requires that the results are verified by more numerous tests.

fig. 6: Two circuit breakers, C1 and C2, placed in series on a circuit.

fig. 7: The principle of cascading between 2 circuit breakers, breaker C2 whose breaking capacity \(I_{cu2} \) is less than the three-phase short-circuit current at its terminals \(I_{sc2} \), is protected or assisted by breaker C1.

fig. 8: Theoretical determination of the discrimination limit between two circuit breakers.

fig. 9: Theoretical determination of the cascading limit between two circuit breakers.
2.2 Dielectric strength for « insulation co-ordination »

What is insulation co-ordination?

Every electrical installation is subject to occasional overvoltages of various origins such as:
- atmospheric overvoltage,
- switching overvoltage,
- overvoltages arising from faults,
- overvoltages following MV/LV arcing,
- etc,…

The study of these overvoltages (origin, value, location, etc) and the rules applied in order to achieve protection against them, are known as insulation co-ordination (see « Cahiers Techniques » n° 151 and n° 179).

In industrial LV systems, overvoltage protection is considered to be achieved when the equipment can withstand the following two types of test without suffering damage:
- the familiar dielectric tests at 50 Hz, e.g. withstand at (2 Ui + 1000 V)/1 min, which simulates the risk of installation faults at higher voltages;
- impulse voltage withstand tests (1.2/50 µs: see fig. 10) of value Uimp (imp as impulse) variable according to location of the installation; recently introduced, these are representative of atmospheric and switching overvoltages.

The performance Uimp, which the switchgear must withstand, is defined in the installation standards according to the table in figure 11.

![Impulse wave for industrial circuit breakers](image)

fig. 10: Impulse wave for industrial circuit breakers 1.2/50 µs.

<table>
<thead>
<tr>
<th>Nominal installation voltage</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At the main system incomer or main LV board</td>
</tr>
<tr>
<td>230 / 400 V</td>
<td>6</td>
</tr>
<tr>
<td>400 / 690 V</td>
<td>8</td>
</tr>
</tbody>
</table>

fig. 11: Assumed transient overvoltage levels (source: IEC publication 38 and NF C 15-100 1990 edition, at a height of 2,000 m).

Assumed overvoltage levels chosen for Merlin Gerin circuit breakers

- 6 kV = **Multi 9**
- 8 kV = **Compact and Masterpact**
Since Uimp must be valid for altitudes of up to 2,000 m, while testing is carried out generally at sea level, the test impulse level is increased by 23% (or 9.8 kV for Uimp = 8 kV).

<table>
<thead>
<tr>
<th>Impulse voltage applied</th>
<th>Impulse voltage levels</th>
<th>CB-disconnectors (with class II front face)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between phases</td>
<td>9.8 kV</td>
<td>9.8 kV</td>
</tr>
<tr>
<td>Between upstream and downstream, circuit breaker open</td>
<td>9.8 kV</td>
<td>12.3 kV</td>
</tr>
<tr>
<td>Between phases and earth</td>
<td>9.8 kV</td>
<td>14.7 kV</td>
</tr>
</tbody>
</table>

Impulse voltage withstand tests

Publications IEC 947 take into account the rules of insulation co-ordination and require that impulse voltage withstand tests are carried out on the switchgear. Thus for industrial circuit breakers of Uimp = 8 kV, the tests detailed in the table in figure 12 are carried out.

In this table, note:

- that for the value Uimp to be valid up to a height of 2,000 m, the tests which are generally carried out at sea level are raised by 23%;
- that a specific test is required for devices with class II front face according to IEC 1140 (formerly IEC 536).

This design characteristic, in addition to the extra safety it provides for operators, allows the assembly of class II equipment while keeping the manual control handle accessible (see fig. 13).

Thus, for example, all Merlin Gerin Compact and Masterpact circuit breakers have class II front faces.

2.3 Taking introduction of electronics into account in industrial circuit breakers

Miniaturisation, lower costs and the new possibilities offered by electronics have recently led manufacturers as a whole to partly replace thermal-magnetic releases by electronic ones. The emergence of this technology, used in severe environmental conditions (strong current, harmonics, extreme temperatures, mechanical impact, etc...) has required publication of appendices F and J of IEC 947-2 in which additional requirements for electronically protected circuit breakers are defined.
In particular they describe the various electromagnetic compatibility (EMC) tests to be carried out on the circuit breakers:
- tests for immunity to:
 - harmonics (IEC 1000 - 4.13) (see fig. 14),
 - current sags and breaks (EN 50 160),
 - frequency variations (EN 50 160),
 - conducted transients (IEC 1000 - 4.4),
- HF (high frequency) perturbations (IEC 1000 - 4.4),
- electromagnetic fields (IEC 1000 - 4.8.9.10),
- electrostatic perturbations (IEC 1000 - 4.2)
- tests for limitation of radiated emissions at radio frequencies.

They also make provision for dry heat, damp heat (see fig. 15) and rapid temperature change tests.

fig. 14: Waveforms applied to devices for harmonic immunity tests.

fig. 15: Test cycle for humidity/heat endurance, repeated over 28 consecutive days.
2.4 Disconnection and residual current protection: two extra functions now recognised

For a number of years, certain manufacturers including Merlin Gerin have worked within major constraints when proposing suitable circuit breakers for disconnection. Likewise, during the sixties Merlin Gerin was the first manufacturer to propose residual current circuit breakers comprising a circuit breaker plus an additional module or « Vigi module » ensuring protection of persons in the event of an insulation fault on the loadside. These two functions are now taken into consideration by IEC 947-2.

Disconnector-circuit breaker
A circuit breaker can be said to be suitable for disconnection and bear the disconnector circuit breaker symbol visible on its front face (see **fig. 16** and **17**) if it has been successfully subjected to a whole series of tests described in the table in **figure 18**.

Residual current circuit breakers
Numerous manufacturers have made use of this Merlin Gerin technology (see **fig. 19**). Today

1. Measurement testing of leakage currents
Intended to ensure that an open circuit breaker conducts no leakage current which could endanger a user.
- Four tests are carried out at 110% of the maximum rated voltage:
 - New device, leakage current should not be greater than 0.5 mA per pole,
 - After the breaking test at Ics, leakage current must not be greater than 2 mA per pole,
 - After endurance testing, leakage current must not be greater than 2 mA per pole,
 - After the breaking test at Icu, leakage current must not be greater than 6 mA per pole.
- In this last case, the breaker is at the end of its life and we can say, therefore, that a circuit breaker or isolator will never have a leakage current greater than 6 mA (a very low current which is not dangerous).

2. Reinforced voltage impulse withstand
For a circuit breaker declared unsuited to isolation, the test consists of applying an impulse voltage Uimp between the phases, then between the phases and the earth of the breaker.
For a circuit breaker declared suited to isolation, a third test is carried out between the incoming and the outgoing terminals with the contacts open and with a higher impulse voltage (see **fig. 12**). Thus for a device considered suited to isolation and for which Uimp = 8 kV, the value of the impulse voltage applied across open contacts at sea level between the incoming and outgoing terminals will be 12.3 kV instead of 9.8 kV.

3. Mechanical strength test
This test, often called « welded contact test » consists of holding the contacts closed while applying a force of 3 times the normal force to the handle for 10 sec. During this test, the position indicator must not indicate open and no padlocking device may be engaged.

fig. 16: Symbols

fig. 17: A Merlin Gerin Compact circuit breaker-disconnector.

fig. 18: The three tests to demonstrate circuit breaker isolation.

fig. 19: Vigicompact, a Merlin Gerin industrial residual current circuit breaker.
3. A test standard based on reality

The life of a circuit breaker in an electrical installation is punctuated with a certain number of successive events such as:
- manual opening/closing (or remote with electrical operating mechanism), on no-load, at current ≤ In, or, more exceptionally, on overload,
- tripping by undervoltage release or shunt trip,
- overvoltage impulses (atmospheric or switching),
- overload tripping,
- exceptional tripping on short-circuit or insulation fault,
- non deterioration of residual current protection units (Vigi modules) after breaking at Icu and Ics,
- absence of untimely tripping in the event of:
 - overcurrent at 6 In,
 - 8/20 µs impulse current wave,
 - system capacitance load,
- operation under severe environmental conditions: 28 day cycle of damp heat (see fig. 15).

3.1 Sequence tests

With IEC 157-1 each test was carried out on a new device.
From now on, with IEC 947-2, the same device is subjected to a series of cumulative tests grouped in sequence.
Five sequences are defined and each type of circuit breaker must be subjected to two, three or four of these sequences according to its characteristics (see the table in figure 20).

Without a doubt, one of the most significant is sequence 1 which provides an excellent illustration of the exceptional constraints imposed on the devices.
Test sequences

<table>
<thead>
<tr>
<th>Test sequences</th>
<th>Type of circuit breaker</th>
<th>Tests to be performed successively on one circuit breaker</th>
<th>Additional tests for isolating circuit breakers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cat. A</td>
<td>Cat. B</td>
<td>(I_{cw})</td>
</tr>
<tr>
<td>Sequence 1</td>
<td></td>
<td></td>
<td>< (I_{cs})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General operating characteristics</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sequence 2</td>
<td></td>
<td></td>
<td>< (I_{cs})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Service breaking capacity (I_{cs})</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sequence 3</td>
<td></td>
<td></td>
<td>< (I_{cs})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ultimate breaking capacity (I_{cu})</td>
</tr>
<tr>
<td></td>
<td>X (1)</td>
<td>X (1)</td>
<td>X</td>
</tr>
<tr>
<td>Sequence 4</td>
<td></td>
<td></td>
<td>< (I_{cs})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short-time withstand test (I_{cw})</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Combined test sequence</td>
<td></td>
<td></td>
<td>< (I_{cs})</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

(1) if \(I_{cu} = I_{cs}\), this sequence is not necessary.

fig. 20: Tests conducted in sequence according to IEC 947-2.
3.2 Very wide sampling of circuit breakers tested

For the purpose of covering all of the published possibilities, the preceding sequences are repeated on several circuit breakers of the same type but with different configurations (see fig. 21):

- three-pole and four-pole,
- fitted with different trips,
- at different voltages,
- with different settings,
- with loadside and lineside supply if the circuit breaker is suitable,
- with or without residual current protection, if provided,
- etc, …

Thus the certification report covers all the published performances and guarantees the user that the device will correctly fulfil its function, regardless of:

- network characteristics,
- circuit breaker equipment,
- settings chosen.

Sample 1:
Test \(I_{cs} = 100 \, \text{kA} \) at \(U_{e} \) min. 240 V on a device fitted with the largest trip unit TM 160 D set to its maximum 160 A. Supply via upstream terminals.

Sample 2:
Same test with device fitted with the smallest trip unit TM 16 D set to its minimum 12.5 A. Supply via upstream terminals.

Sample 3:
Test \(I_{cs} = 70 \, \text{kA} \) at intermediate \(U_{e} \) 415 V on a device fitted with the largest trip unit TM 160 D set to its maximum 160 A. Supply via upstream terminals.

Sample 4:
Test \(I_{cs} = 10 \, \text{kA} \) under max. \(U_{e} \) 690V on a device fitted with the largest trip unit TM 160 D set to its maximum 160 A. Supply via downstream terminals.

Samples: 5, 6, 7, 8
Same as samples 1, 2, 3, 4 but using a device fitted with a residual current Vigi protection module.

fig. 21: The \(I_{cs} \) service breaking capacity test sequence applied to a Vigicompact NS 160H circuit breaker: it must be repeated on 8 devices.
4.1 Fundamental selection criteria for circuit breakers are unchanged

To determine the circuit breaker to be installed at a point in the electrical installation, it is primarily necessary to know two parameters:

- the load current I_l;
- the value of the three-phase short-circuit current (prospective I_{sc}) at the origin of the wiring installation.

The circuit breaker is selected, as always, by comparing its setting current I_r with load current I_l, and its breaking capacity I_{cu} with the prospective I_{sc} (see fig. 22). These two basic rules are included in the installation standard NF C 15-100 and remain unchanged.

4.2 Use of « service breaking capacity » I_{sc}

For reasons developed in chapter 2, IEC 947-2 has defined the new service breaking capacity characteristic, I_{sc}, which expresses the ability of a device to continue to operate normally after short-circuit breaking at a « probable » value.

Although there may be no regulations in the installation standards (IEC 364 or NF C 15-100) corresponding to the use of performance I_{sc}, it is important, and wise, in order to ensure optimum continuity of service, to choose a device whose performance I_{sc} is such that $I_{sc} \geq$ probable I_{sc}.

a) Circuit breakers installed near power sources:

These devices are usually installed as general incomers, connecting up the switchboard or as a main LV board outgoer which, as a result of their proximity with transformers, must provide protection against virtually non-impedant faults. In actual fact the single-phase ph/N and ph/PE faults are of the same magnitude as the three-phase I_{sc} due to:

- low zero-sequence source impedance,
- reduced connection resistances,
- low impedance cabling between source and device.

In these conditions, the probable short-circuit currents will be close to the theoretical value of the prospective I_{sc} (see the calculation example in appendix 3).

It is therefore important to choose devices whose I_{sc} performance is close to or equal to I_{cu}.

The Merlin Gerin Masterpact and Compact NS ranges, designed for use at this distribution level, therefore logically have an $I_{sc} = 100\%$ I_{cu}.

b) Lower rated circuit breakers used at a distance from power sources:

These devices, usually installed in subdistribution switchboards, protect cabling between switchboards, or between switchboards and loads.

In this case, the probable short-circuits are greatly diminished because when they occur they are nearly always single-phase or two-phase, and located at the extremity of the protected wiring system.

Their value can be estimated as being at most equal to 80% of two-phase I_{sc} calculated at the end of the wiring system.

Calculations show that the probable short-circuit current is in most cases less than 50% of prospective I_{sc} (see appendix 3).

Although this is not strictly speaking an installation requirement for standards, use in this case of circuit breakers whose I_{sc} is $> 50\%$ is a wise precaution guaranteeing long service life of the installation.

All the devices in the Merlin Gerin Multi 9 range are normally used at this distribution level, and have a service breaking capacity at least equal to 50% I_{cu}.
4.3 Two devices in one: the circuit breaker-disconnector

Among the qualities required of an electrical installation, one in particular is of major importance for the user and that is the capability, in the event of a breakdown, to take out of service only the absolute minimum of the installation. Reminder: take out of service = isolate + lock in « isolated » position (by padlock or switch-lock) + check absence of voltage at the point of intervention.

The most flexible solution is naturally the ability to fit such isolating/padlocking devices at all stages of distribution. Circuit breaker-disconnectors provide a practical solution, at no extra cost, for this problem.

For this reason all Merlin Gerin Compact and Masterpact industrial circuit breakers are circuit breaker-disconnectors lockable by padlock (see fig. 23), and/or by switch-lock (see fig. 24).

![fig. 23: Padlocking device on a Merlin Gerin Compact circuit breaker.](image1)

![fig. 24: Interlocking devices on a Merlin Gerin Masterpact circuit breaker.](image2)

4.4 « All risks insurance »: conformity with IEC 947-2

For the designer, a circuit breaker's conformity with IEC 947-2, or with the national standards derived from it, constitutes the best possible assurance of quality and reliability in the environment of LV electrical installations.

This assurance results from the fact that the technological progress achieved by leading manufacturers has been taken into consideration by the standards, together with a comprehensive test standard which closely resembles actual operating conditions.

Conformity with IEC 947-2 is verified by accredited laboratories, and certified by organisations such as the ASEFA in France and the LOVAG at European level as part of an international Mutual Recognition agreement.

Figure 25 shows an example of a certificate of conformity.

Note that final distribution circuit breakers, particularly in the domestic sector, must comply with standard IEC 898. However, for use in industrial installations, some circuit breakers are governed by the stipulations of standard IEC 947-2 (see appendix 4).
fig. 25: Example of a certificate of conformity issued by the ASEFA.
Appendix 1: main differences between IEC 157-1 and IEC 947-2

<table>
<thead>
<tr>
<th>IEC 157-1</th>
<th>IEC 947-2</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaking capacity P1 cycle.</td>
<td>Ultimate breaking capacity I_{cu}</td>
<td>Equivalent characteristic.</td>
</tr>
<tr>
<td></td>
<td>(sequence 9).</td>
<td></td>
</tr>
<tr>
<td>Breaking capacity P2 cycle.</td>
<td>Service breaking capacity I_{cs}</td>
<td>The new I_{cs} characteristic is compulsory and more rigorous than the P2 cycle of IEC 157-1, as its tests are followed (after breaking) by an operating check at I_n.</td>
</tr>
<tr>
<td></td>
<td>(sequence 2).</td>
<td></td>
</tr>
<tr>
<td>Each test is performed on a new device</td>
<td>Tests are conducted in sequence.</td>
<td>More severe because of the cumulative testing on one device, but closer to real conditions.</td>
</tr>
<tr>
<td>(operation, endurance, overloads, breaking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>capacity).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify (three poles loaded) at the two</td>
<td>Verify (three poles loaded) at the two</td>
<td>where:</td>
</tr>
<tr>
<td>asymptotes:</td>
<td>asymptotes:</td>
<td>$I_{rd} = 1.35$ (I_{rd})</td>
</tr>
<tr>
<td>$I_{nd} = 1.05$ I_{r}</td>
<td>$I_{nd} = 1.05$ I_{r}</td>
<td>$t = 1$ h (≤ 63 A)</td>
</tr>
<tr>
<td>or $I_{d} = 1.25$ I_{r} (> 63 A)</td>
<td>$I_{d} = 1.30$</td>
<td>$t = 2$ h (> 63 A)</td>
</tr>
<tr>
<td>No other verification of overcurrent releases.</td>
<td>Verification of tripping:</td>
<td>Better guarantee of operation of releases.</td>
</tr>
<tr>
<td></td>
<td>■ pole by pole (sequences 3.4.5);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ all poles loaded (sequence 2).</td>
<td></td>
</tr>
<tr>
<td>Nothing.</td>
<td>Definition of tests for isolation with</td>
<td>The circuit breaker-disconnector is recognised by installation standards to ensure the isolating function.</td>
</tr>
<tr>
<td></td>
<td>the associated symbol:</td>
<td></td>
</tr>
<tr>
<td>Nothing.</td>
<td>Voltage impulse withstand test.</td>
<td>Allows insulation co-ordination throughout the installation.</td>
</tr>
<tr>
<td></td>
<td>Characteristic U_{imp}.</td>
<td></td>
</tr>
<tr>
<td>Co-ordination only between fuse and circuit</td>
<td>Includes a co-ordination appendix.</td>
<td>Takes into account two-circuit breakers in series.</td>
</tr>
<tr>
<td>breaker.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nothing.</td>
<td>Appendix B: devoted to circuit breakers</td>
<td>Standardisation of industrial residual current circuit breakers.</td>
</tr>
<tr>
<td></td>
<td>fitted with residual current protection.</td>
<td></td>
</tr>
<tr>
<td>Nothing.</td>
<td>Appendix F: devoted to circuit breakers</td>
<td>Defines the additional tests specific to proper operation of electronic releases.</td>
</tr>
<tr>
<td></td>
<td>fitted with electronic releases.</td>
<td></td>
</tr>
<tr>
<td>Nothing.</td>
<td>Appendix G: devoted to measurement of power</td>
<td>Standardises power dissipation measurement.</td>
</tr>
<tr>
<td></td>
<td>dissipation by circuit breaker.</td>
<td></td>
</tr>
<tr>
<td>Nothing.</td>
<td>Appendix H: describes the test sequence for</td>
<td>Guarantees users that a device can be installed in IT earthing systems without other verifications.</td>
</tr>
<tr>
<td></td>
<td>circuit breakers used in IT earthing systems.</td>
<td></td>
</tr>
</tbody>
</table>
Definitions relating to voltage

\(U_e \): rated service voltage.
\(U_i \): rated insulation voltage (> \(U_e \) max.).
\(U_{\text{imp}} \): rated impulse withstand voltage.

Definitions relating to current

\(I_B \): circuit operational current, as in NF C 15-100, paragraph 433-2.
\(I_{\text{cm}} \): rated short-circuit making capacity.
\(I_{\text{cs}} \): rated service breaking capacity (normally expressed as a % of \(I_{\text{cu}} \)).
\(I_{\text{cu}} \): rated ultimate short-circuit breaking capacity (expressed in kA).
\(I_{\text{cw}} \): rated short-time withstand current.
\(I_{\Delta n} \): rated residual operating current (often called residual sensitivity).

\(I_n \): rated current = maximum value of current used for the temperature rise tests (e.g. for a Compact NS250 circuit breaker: \(I_n = 250 \) A).
\(I_s \): discriminating current limit.
\(I_{\text{sc}} \): short-circuit current at a given point in the installation.

Various definitions and symbols

\(\text{symbol for circuit breaker.} \)
\(\text{symbol for circuit breaker/ disconnector.} \)

Cat A: category of circuit breakers without time delay on opening under short-circuit conditions.
Cat B: category of circuit breakers with time delay on opening under short-circuit conditions (\(I_{\text{sc}} < I_{\text{cw}} \)).
Appendix 3: probable Isc calculation examples

1/ Downstream of a circuit breaker installed in a main LV board (see fig. 26)

![Diagram](image)

Calculation of maximum prospective Isc

(Three-phase short-circuit at circuit breaker installation point)

<table>
<thead>
<tr>
<th>Lineside impedance</th>
<th>Calculation of maximum prospective Isc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Za = Xa = (\frac{400^2}{P_{cc}}) = 0.32 mΩ</td>
<td>Za = Xa = (\frac{400^2}{P_{cc}}) = 0.32 mΩ</td>
</tr>
</tbody>
</table>

Transformer impedance

| Za = Xa = \(\frac{400^2}{P_{cc}} \) = 0.32 mΩ |
| Za = Xa = \(\frac{400^2}{P_{cc}} \) = 0.32 mΩ |

* For a transformer with delta/zig-zag connection, direct impedance Zd and negative phase-sequence impedance Zi are equal: zero-sequence impedance equals 0.4 Zd.

Impedance of transformer - main LV board connection cable + Busbar impedance (= 5 m)

Rph = 22.5 × \(\frac{10}{4 \times 240} \) = 0.234 mΩ	Rph = 0.234 mΩ
Xph = 10 × \(\frac{0.1}{4} \) = 0.25 mΩ	Xph = 0.25 mΩ
\(\sqrt{(0.32 + 7.04 + 0.25)^2 + (0.234)^2} \)	\(\sqrt{(0.32 + 5.63 + 0.25 + 0.25)^2 + (0.234 + 0.468)^2} \)
\(\frac{230}{0.8} \)	\(\frac{230}{0.8} \)

Conclusion

As probable Isc is very close to prospective Isc, it is advisable to choose a device whose Ics is equal to 100% Icu, e.g. a Merlin Gerin NS160N circuit breaker.
Calculation of the probable I_{sc}
(Two-phase short-circuit with an arc at least 3 m from the switchboard)

<table>
<thead>
<tr>
<th>Lineside impedance</th>
<th>$Z_a = \frac{230}{18 \times 10^3} = 12.78 \text{ m\Omega}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Ra = 12.78 \times 0.3 = 3.83 \text{ m\Omega}$</td>
</tr>
<tr>
<td></td>
<td>$Xa = 12.19 \text{ m\Omega}$</td>
</tr>
<tr>
<td>Cable impedance</td>
<td>$R_{ph} = \frac{22.5 \times 3}{10} = 6.75 \text{ m\Omega}$</td>
</tr>
<tr>
<td></td>
<td>$X_{ph} = 3 \times 0.08 = 0.24 \text{ m\Omega}$</td>
</tr>
<tr>
<td>Connection impedance</td>
<td>$R = 4 \text{ m\Omega}$</td>
</tr>
<tr>
<td></td>
<td>$X : \varepsilon$</td>
</tr>
<tr>
<td>Total impedance per phase</td>
<td>$\sum R = 14.58 \text{ m\Omega}$</td>
</tr>
<tr>
<td></td>
<td>$\sum X = 12.43 \text{ m\Omega}$</td>
</tr>
<tr>
<td></td>
<td>$Z_t = \sqrt{(14.58)^2 + (12.43)^2} = 19.16 \text{ m\Omega}$</td>
</tr>
<tr>
<td></td>
<td>prob. $I_{sc} = 0.8 \times \frac{230 \times \sqrt{3}}{2 \times 19.16}$</td>
</tr>
<tr>
<td></td>
<td>prob. $I_{sc} = 8.3 \text{ kA}$</td>
</tr>
<tr>
<td></td>
<td>(the arc is taken into account by the factor 0.8)</td>
</tr>
</tbody>
</table>

Conclusion: The probable I_{sc} is less than 50% of prospective I_{sc} (18 kA). It is thus usual to choose a device with an I_{cs} equal to 50% of I_{cu}, for example a Merlin Gerin C60L circuit breaker.
Industrial circuit breakers covered by the standard IEC 947-2 are selected, installed and used by experienced professionals. This is not always the case with circuit breakers for final distribution, particularly where they are used in the domestic field (by inexperienced users), hence the standard IEC 898.

IEC 898 circuit breakers which form part of « domestic and similar switchgear » are easier to install (for example they do not have an adjustable threshold), while still guaranteeing a high level of safety. Their use by professionals means that some of them also come under IEC 947-2.

IEC 898 dates from 1987. It became a European Norm in mid-1990. Since then national standards harmonised with the European Norm (EN 60 898) have been published in CENELEC member countries.

There are some notable differences between IEC 947-2 and EN 60 898. It is of interest to be aware of them since small circuit breakers are often used in industrial final distribution.

<table>
<thead>
<tr>
<th>IEC 947-2</th>
<th>EN 60 898</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Un (V)</td>
<td>< 1000</td>
</tr>
<tr>
<td>Current</td>
<td>(1)</td>
</tr>
<tr>
<td>Thermal trip</td>
<td>1.05 at 1.03 In</td>
</tr>
<tr>
<td>Magnetic trip</td>
<td>(2)</td>
</tr>
<tr>
<td>Breaking capacity</td>
<td>Icu</td>
</tr>
<tr>
<td>Service capacity</td>
<td>Ics</td>
</tr>
<tr>
<td>Isolation</td>
<td>yes</td>
</tr>
</tbody>
</table>

(1) IEC 947-2 does not provide an upper or lower limit. 947-2 circuit breakers are used in the range of «a few amps to a few thousand amps».

(2) Standard IEC 947-2 does not fix the range of operation and leaves the manufacturer to define the magnetic trip threshold, which must then fall within ±20%.

For Merlin Gerin Compact circuit breakers of ratings higher than 250 A, the magnetic thresholds are:

- G type adjustable from 2 to 5 1rm
- D type adjustable from 5 to 10 1rm
- MA type adjustable from 6.3 to 12.5 1rm

(3) Standard EN 60 898 modifies standard practice (curves L, U, D) and introduces some new curves:

- curve B: 3 to 5 In (2.6 to 3.85 for L),
- curve C: 5 to 10 In (3.85 to 8.8 for U),
- curve D: 10 to 20 In (10 to 14 for D and MA).

Moreover this standard limits its field of application to circuit breakers of breaking capacity ≤ 25 kA: short-circuit current which there is little chance of observing in a domestic or commercial installation.