

ComPact NSXm.

Common <u>c</u>	haracteristics				Commo	on chara	cteristic	S						
	Insulation voltage (V)	Ui		800	Control	Ма	nual	With toggle		\odot	-			
	Insulation voltage for ELCB ^[1]	(V) Ui		500					xtended rotary handl					
	Impulse withstand voltage (kV)			8				With side rotary	y handle	۲				
	Operational voltage (V)		C 50/60 Hz	690	Versions	Fix	ed			۲				
	Operational voltage for ELCB	^{1]} (V) Ue A0	C 50/60 Hz	440										
Suitability for iso	blation	IEC/EN	60947-2	yes										
Utilisation catego	lory			A										
Pollution degree	2	IEC 606	64-1	3										
Circuit brea	kors				NSXm u	n to 63	٨			NSYmf	rom 80 t	o 160 A ar		[1]
Breaking capa					E	B	F	Ν		E	B	F	N	Н
	acity (kA rms)				15	D	1	IN	10 1	L	D	1		111
sleaking cap	lcu		z 220240	V	25	50	85	90	100	25	50	85	90	100
	icu	AC 20/00 H	380415		16	25	36	50		16	25	36	50	70
			380415 440 V	v	10	20	35	50		10	20	30	50	65
					8	10		25	30	10				
			500 V		0		15			-	-	-	-	-
			525 V		-	-	10	15	22	-	-	-	-	-
			660690	V	-	-	-	10	10	-	-	-	-	-
service break	king capacity (kA rms)		000 015		05	50	05		100	0.5	50	05	00	100
	lcs	AC 50/60 H	z 220240		25	50	85	90		25	50	85	90	100
			380415	V	16	25	36	50		16 10	25	36 30	50 50	70
			440 V		10 8	20 10	30 10	50 25		10	20	50		65
			500 V 525 V		0		10	25 15	30 22	-	-	-	-	-
			525 V 660690 '	V	-	-	10	2.5	2.5	_			-	-
Durability (C-O c	cycles)	Mechanical		v	20000	-	-	2.0	2.0	_	-	-	-	-
	cycico)	Electrical	440 V	ln/2	20000									
			440 V	ln	10000									
			690 V	In/2	10000									
			000 v	ln	5000									
Protection	nd measurements				10000									
		magnetic			۲					۲				
, venioau / shore		ic with Earth Lea	akago Drotos	tion (ELCP)						•				
			akaye Protec							ullet				
Options		tatus/control			•									
		B ^[1] : alarming a	ind fault differ	renciation	۲									
Installation / o														
Dimensions a	-													
Dimensions (mn	n)		3P		81 x 137 x 8									
W x H x D			4P		108 x 137 x									
			ELCB ^[1]		108 x 144 x	80								
Weight (kg)			3P		1.06									
			4P ELCB [1]		1.42									
Connections			ELCB		1.03									
Pitch (mm)			Standard		27									
			With sprea	aders	35									
vert ink lug Cu	or Al ^[2] cables Cross-se	ection (mm ²)	Rigid		95									
	0171000163 01055-56		Flexible		70									
Crimp lugs Cu o	r Al Cross-se	ection (mm ²)	Rigid		120									
ugo Gu U	01055-50		Flexible		95									
Source chang	jeover system		1 IONIDIO											
	lical interlocking				۲				I	•				
nanual mechali	akage Circuit Breaker (MicroLogic V									J				

www.se.com

www.se.com

[2] Al up to 100 A.

Select your circuit breakers and switch-disconnectors Characteristics and performance

Life Is On Schneider

Α

Select your circuit breakers and switch-disconnectors Characteristics and performance ComPact NSX circuit breakers from 100 to 250 A up to 690 V

Rated

voltages

Options

WxHxD

Common characteristics

Insulation voltage (V)

Ui

ComPact NSX100/160/250.

ComPact NSX250 R

ComPact NSX250 HB2

[1] OSN: Over Sized Neutral protection for neutrals carrying high currents (e.g. 3rd harmonics).

[2] ZSI: Zone Selective Interlocking using pilot wires [3] Vigi add-on is not available for breaking capacity levels HB1/HB2

[4] There is no 160 A frame, use 250 A frame with lower rating trip units for R. HB1. HB2.

[5] 2P circuit breaker in 3P case for B and F types, only with thermal-magnetic trip unit.

[6] Earth Leakage Circuit Breaker (MicroLogic Vigi 4.2 and 7.2 E).

Insulation voltage for ELCB [6] Ui 500 Impulse withstand voltage (kV) Uimp 8 Electrical Operational voltage (V) Ue AC 50/60 Hz 690 Versions Fixed Operation voltage for ELCB ^[6] Ue AC 50/60 Hz 440 Withdrawable Suitability for isolation IEC/EN 60947-2 yes Utilisation category А IEC 60664-1 Pollution degree 3 **Circuit breakers** NSX100 B F N H S L R HB1 HB2 B **Breaking capacity levels** Electrical characteristics as per IEC/EN 60947-2 100 100 Rated current (A) 40 °C In 2 [5], 3, 4 Number of poles 34 Breaking capacity (kA rms) lcu AC 50/60 Hz 220/240 V 40 85 90 100 120 150 200 36 35 380/415 V 25 50 70 100 150 200 20 65 440 V 50 90 130 200 25 50 80 85 100 500 V 15 36 65 70 525 V 22 35 35 40 50 65 80 100 10 660/690 V 8 10 15 20 45 75 100 Service breaking capacity (kA rms) AC 50/60 Hz 220/240 V lcs 40 85 90 100 120 150 200 36 35 380/415 V 25 50 70 100 150 200 20 50 65 90 130 200 440 V 7 12 70 80 36 50 65 85 100 500 V 65 525 V 11 35 35 40 50 80 100 660/690 V 10 10 15 20 45 75 100 Δ Durability (C-O cycles) 50000 20000 Mechanica 440 V ln/250000 20000 Flectrical 30000 10000 In 20000 10000 690 V ln/210000 In 5000 Characteristics as per UL 508 AC 50/60 Hz 240 V Breaking capacity (kA rms) 85 85 85 ----480 V 25 50 65 --- --600 V 10 10 10 Protection and measurements Short-circuit protection Magnetic only \bigcirc Overload / short-circuit protection Thermal magnetic \bigcirc Electronic \odot with neutral protection (Off-0.5-1-OSN) ^[1] ۲ with ground-fault protection \bigcirc with zone selective interlocking (ZSI)^[2] \bigcirc Display / I, U, f, P, E, THD measurements / interrupted-current measurement \bigcirc Power Meter display on door \bigcirc Operating assistance \odot Counters \bigcirc Histories and alarms \odot Metering Com ۲ Device status/control Corr \odot Earth-leakage protection By Vigi add-on [3] \bigcirc By Vigirex relay \bigcirc Installation / connections **Dimensions and weights** 105 x 161 x 86 105 x 161 x 86 Dimensions (mm) Fixed, front connections 2/3P 4P 140 x 161 x 86 140 x 161 x 86 Weight (kg) 2/3P 2.05 2.4 Fixed, front connections 2.4 2.8 4P Connections With/without spreaders 35/45 mm 35/45 mm Connection terminals Pitch Cross-section 300 300 Large Cu or Al cables mm² Source-changeover system Manual mechanical interlocking \odot Automatic source-changeover \bigcirc

Select your circuit breakers and switch-disconnectors Characteristics and performance

www.se.com ComPact NSX circuit breakers from 100 to 250 A up to 690 V

With toggle

Plug-in base

NSX160

FNHS

90

50

50

36

35 10

50

50

36

10 10 15

85 85

10

-

10

100

70 10

65

50

35

10 15

100 12

70 10

65 90

50

Chassis

160

40 85

25 20

15

40 85 90

25 36

20 35

15

40000

40000

20000

15000

7500

 \odot

 \bigcirc

 \odot

 \odot

۲

 \bigcirc

 \bigcirc

 $oldsymbol{igo}$

۲

۲

۲

 \odot

۲

 $oldsymbol{O}$

 \bigcirc

2.2

2.6

300

 \odot

 \odot

35/45 mm

105 x 161 x 86

140 x 161 x 86

2 [5], 3, 4

36

35

30

22

8

30

22 35 35 40

85

35 50 65 -

10

8

With remote control

A-6 Life Is On Schneider www.se.com

800

Common characteristics

Control

Manual

 \bigcirc With direct or extended rotary handle \bigcirc \bigcirc \bigcirc

A

		NS2	(25)	0						
S	L	В	F	Ν	Н	S	L	R	HB1	HB2
		250						250		
		2 [5],	3.4					3, 4		
		, ,								
120	150	40	85	90	100	120	150	200	-	-
100	150	25	36	50	70	100	150	200	-	-
90	130	20	35	50	65	90	130	200	-	-
65	70	15	30	36	50	65	70	80	85	100
40	50	-	22	35	35	40	50	65	80	100
15	20	-	8	10	10	15	20	45	75	100
120	150	40	85	90	100	120	150	200	-	-
100	150	25	36	50	70	100	150	200	-	-
90	130	20	35	50	65	90	130	200	-	-
65	70	15	30	36	50	65	70	80	85	100
40	50	-	22	35	35	40	50	65	80	100
15	20	-	8	10	10	15	20	45	75	100
		2000						2000		
		2000	0					2000	0	
		1000	0					1000	0	
		1000	0					1000	0	
		5000						5000		
-	-	-	85	85	85	-	-	-	-	-
-	-	-	35	50	65	-	-	-	-	-
-	-	-	15	15	15	-	-	-	-	-
		_								

\odot
\odot
\odot
\odot
\odot
\odot
\odot

105 x 161 x 86
140 x 161 x 86
2.4
2.8
35/45 mm
300
۲
۲

Select your circuit breakers and switch-disconnectors Characteristics and performance ComPact NSX circuit breakers from 400 to 630 A up to 690 V

ComPact NSX400/630.

0000

ComPact NSX630 HB2.

A-8

[1] OSN: Over Sized Neutral protection for neutrals carrying high currents (e.g. 3rd harmonics).

[2] ZSI: Zone Selective Interlocking using pilot wires. [3] Vigi add-on is not available for breaking capacity levels

HB1/HB2. [4] Earth Leakage Circuit Breaker (MicroLogic Vigi 4.3 and 7.3 E)

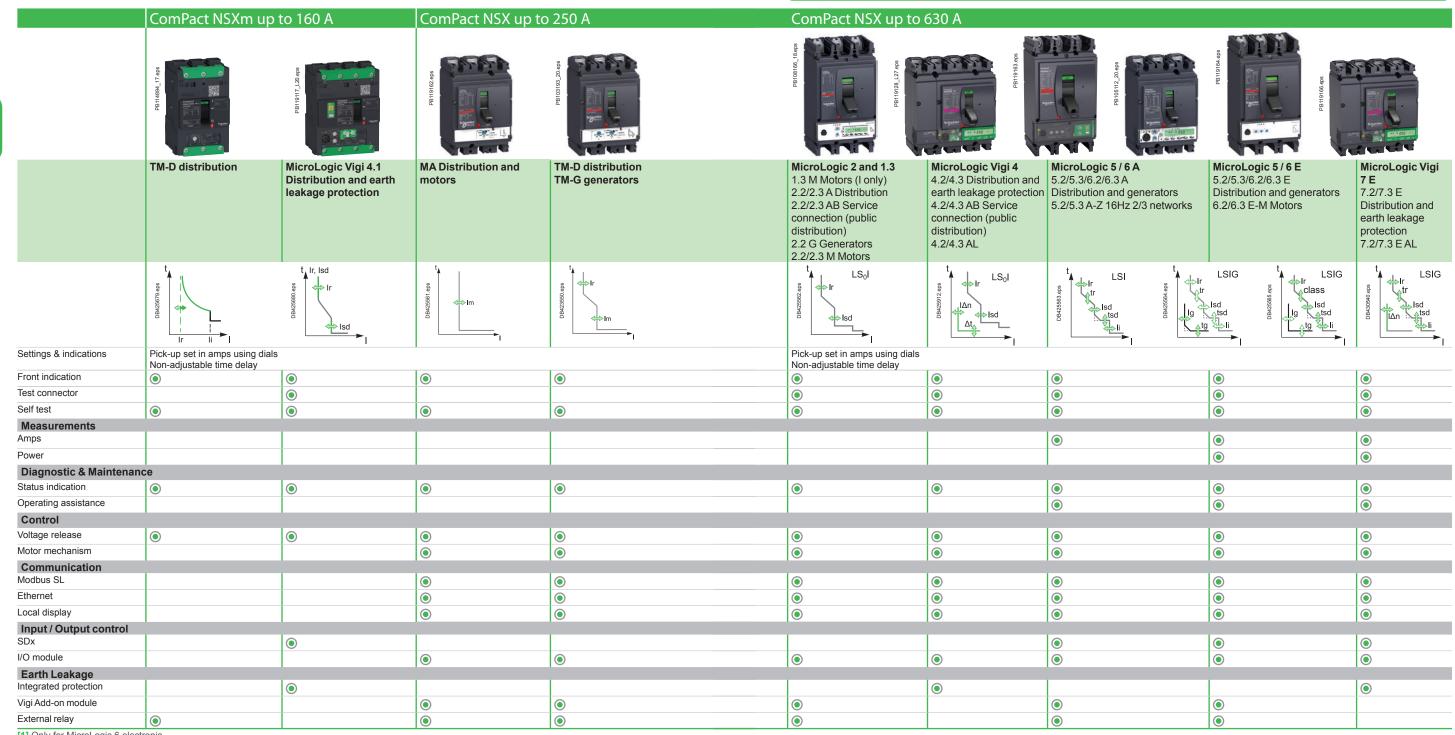
Operation voltage for E		AC 50/60 H			Version	าร		Fixe
Suitability for isolation		IEC/EN 609	5					With
Utilisation category			-1 3					
Pollution degree		IEC 60664-	-1 3					
Circuit breakers					NSX	400		
Breaking capacity levels					F	Ν	Н	S
Electrical characteristics as	per IEC/E	N 60947-2			1.			
Rated current (A)	In	40 °C			400			
Number of poles					3, 4			
Breaking capacity (kA rms)	leu	AC 50/60 Hz	220/240 \/		40	05	100	120
	lcu	AC 50/60 HZ	380/415 V		36	85 50	70	120
			440 V		30	42	65	90
			500 V		25	30	50	65
			525 V		20	22	35	40
Service breaking capacity (kA r	ms)		660/690 V		10	10	20	25
goupuong (lot)	lcs	AC 50/60 Hz	220/240 V		40	85	100	120
			380/415 V		36	50	70	100
			440 V		30	42	65	90
			500 V 525 V		25	30 11	50 11	65 12
			660/690 V		10	10	10	12
Durability (C-O cycles)		Mechanical			15000			
		Electrical	440 V	In/2	12000			
			0001/	In	6000			
			690 V	In/2 In	6000 3000			
Characteristics as per UL 5	08				10000			
Breaking capacity (kA rms)		AC 50/60 Hz	240 V		85	85	85	-
			480 V		35	50	65	-
Protection and measuremer	te		600 V		20	10	20	-
Short-circuit protection	Magnetic	only			۲			
Overload / short-circuit protection	Thermal I	-			-			
overload / short-circuit protection	Electronic				•			
		with neutral r	protection (O	ff-0.5-1-OSN) [1]				
		with ground-						
		-	-	ocking (ZSI) ^[2]				
Display / I, U, f, P, E, THD measureme	onto / intorrunt				•			
Options		eter display on	0001		۲			
		g assistance			۲			
	Counters				۲			
		and alarms			۲			
	Metering	Com			۲			
		atus/control Co	m		۲			
Earth-leakage protection	By Vigi a	dd-on ^[3]			۲			
	By Vigire:	x relay			۲			
Installation / connections								
Dimensions and weights								
Dimensions (mm) W x H x D	Fixed, fro	ont connections	2/3P		140 x	255 x 1 ⁻	10	
			4P			255 x 1′	10	
Weight (kg)	Fixed, fro	ont connections	2/3P 4P		6.05			
			46		1.90			

Select your circuit breakers and switch-disconnectors www.se.com Characteristics and performance ComPact NSX circuit breakers from 400 to 630 A up to 690 V

Common characteristics					Con	nmor	n char	acteri	stics														
Rated voltages Insulation voltage (V)	Ui			00	Contro	ol		Ма	nual			With	toggle							\odot			
Insulation voltage for ELC Impulse withstand voltage			50 8									With	direct or	extende	ed rotary	handle				۲			
Operational voltage (V)	Ue	AC 50/60 H		90				Ele	ctrical			With	remote o	control						۲			
Operation voltage for ELC		AC 50/60 H		40	Versio	ns		Fix	ed											۲			
Suitability for isolation		IEC/EN 609	,					Wit	hdrawal	ole		Plug-	-in base							۲			
Utilisation category Pollution degree		IEC 60664-	A -1 3									Chas											
		120 00001																					
Circuit breakers					NS>	(400							NSX	630							1		
Development of the local						N		6			1104	LIDO		NI		6			25 - 500			01 - 63	
Breaking capacity levels Electrical characteristics as p		60047 2			F	Ν	Н	S	L	R	HB1	HB2	F	Ν	Н	S	L	R	HB1	HB2	K	HB1	HB2
Rated current (A)		40 °C			400					400			630					630					
Number of poles					3, 4					3, 4			3, 4					3, 4					
Breaking capacity (kA rms)																							
	lcu	AC 50/60 Hz			40	85	100	120 100	150 150	200 200	-	-	40	85	100	120 100	150 150	200 200	-	-	200 200	-	-
			380/415 440 V	V	36 30	50 42	70 65	90	130	200	-	-	36 30	50 42	70 65	90	130	200	-	-	200	-	-
			500 V		25	30	50	65	70	80	85	100	25	30	50	65	70	80	85	100	80	85	100
			525 V	.,	20	22	35	40	50	65	80	100	20	22	35	40	50	65	80	100	65	80	100
Service breaking capacity (kA rms	s)		660/690	V	10	10	20	25	35	45	75	100	10	10	20	25	35	45	75	100	45	75	100
control stoatting capacity (is this	lcs	AC 50/60 Hz	220/240	V	40	85	100	120	150	200		-	40	85	100	120	150	200	-	-	200	-	-
			380/415	V	36	50	70	100	150	200	-	-	36	50	70	100	150	200	-	-	200	-	-
			440 V 500 V		 30 25	42	65 50	90	130 70	200	-	- 100	30 25	42	65	90	130 70	200 80	-	- 100	200	-	- 100
			500 V 525 V		10	30 11	11	65 12	12	80 65	85 80	100	10	30 11	50 11	65 12	12	65	85 80	100	80	85	-
			660/690	V	10	10	10	12	12	45	75	100	10	10	10	12	12	45	75	100	-	-	-
Durability (C-O cycles)		Mechanical	440.14	1- /0	15000					15000			15000					15000)				
		Electrical	440 V	In/2 In	12000 6000)				12000 6000	J		8000 4000					8000 4000					
			690 V	In/2	6000					6000			6000					6000					
				In	3000					3000			2000					2000					
Characteristics as per UL 508	}	AC 50/60 LI-	240.1/		05	05	05						05	05	05								
Breaking capacity (kA rms)		AC 50/60 Hz	480 V		85 35	85 50	85 65	-	-	-	-	-	85 35	85 50	85 65	-	-	-	-	-	-	-	-
			600 V		20	10	20	-	-	-	-	-	20	20	20	-	-	-	-	-	-	-	-
Protection and measurements																							
Short-circuit protection	Magnetic o	-			\odot								\odot										
Overload / short-circuit protection	Thermal m Electronic	nagnetic			-								-										
	Liootionio	with neutral r	protection	(Off-0.5-1-OSN) [1]																			
		with ground-		. ,																			
		0		rlocking (ZSI) ^[2]																			
Display / I, U, f, P, E, THD measurement	te / intorrunto																						
Options	-	ter display on																					
Options			0001		\odot																		
		assistance																					
	Counters	and alarma																					
	Histories a Metering C																						
		itus/control Co			\odot																		
Forth lookage protection			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																				
Earth-leakage protection	By Vigi ade By Vigirex				 0																		
Installation / connections	by vigitex	iciay			۲								۲										
Installation / connections Dimensions and weights																							
Dimensions (mm) W x H x D	Fixed, fron	t connections	2/3P		140 x	255 x 11	10						140 x 3	255 x 11	0								
			4P		185 x	255 x 11							185 x 1	255 x 11									
Weight (kg)	Fixed, fron	t connections			6.05 7.90								6.2 8.13										
Connections			4P		7.90								0.13										
Connection terminals	Pitch		With/with	out spreaders	45/52								45/52.	.5 mm									
		4:			45/70	mm							45/70	mm									
Large Cu or Al cables	Cross-sect	lion	mm²		4 x 24	Ð							4 x 24	U									
Source-changeover system Manual mechanical interlocking													6										
Automatic source-changeover					 0																		
Automatic source-change0ver					 \odot								۲										

Life Is On Schneider

www.se.com


Α

Select your protection Overview of trip units

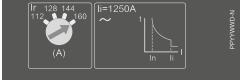
ComPact NSXm has a built-in trip unit.

B

ComPact NSX offers a range of trip units in interchangeable cases, whether they are magnetic, thermal-magnetic or electronic. Versions 5 and 6 of the electronic trip unit offer communication and metering. Using MicroLogic sensors and intelligence, ComPact NSX supplies all the information required to manage the electrical installation and optimise energy use.

[1] Only for MicroLogic 6 electronic.

[2] Only for MicroLogic E.


Select your protection Overview of trip units

Select your protection **Protection of distribution systems** ComPact NSXm TM thermal-magnetic trip units

ComPact NSXm has a built-in thermal magnetic trip units.

TM-D thermal-magnetic trip units

Circuit breakers equipped with thermal-magnetic trip units are used mainly in industrial and commercial electrical distribution applications for protection of cables on distribution systems supplied by transformers.

Protection

Thermal protection (Ir)

Thermal overload protection based on a bimetal strip providing an inverse time curve l²t, corresponding to a temperature rise limit. Above this limit, the deformation of the strip trips the circuit breaker operating mechanism. This protection operates according to:

Ir that can be adjusted in amps from 0.7 to 1 times the rating of the circuit breaker (16 A to 160 A), corresponding to settings from 11 to 160 A for the range of products

a non-adjustable time delay, defined to ensure protection of the cables.

Magnetic protection (Im)

Short-circuit protection with a fixed pick-up Im that initiates instantaneous tripping if exceeded with a non adjustable time delay to ensure selectivity and cascading.

Protection versions

- 3-pole:
- □ 3P 3D: 3-pole frame (3P) with detection on all 3 poles (3D).
- 4-pole:
- □ 4P 3D: 4-pole frame (4P) with detection on 3 poles (3D).

 \Box 4P 4D: 4-pole frame (4P) with detection on all 4 poles (same threshold for phases and neutral).

Note: All the circuit breakers have a transparent lead-sealable cover that protects access to the adjustment dials.

В

Protection of distribution systems ComPact NSXm TM thermal-magnetic trip units

Thermal-magnetic trip units TM16D to 160D

t,		Ratings (A)	In at 40 °C [1]	16	25	32	40	50	63	80	100	125	160		
8.eps	≪⇒lr	Circuit breaker	ComPact NSXm	۲	igodoldoldoldoldoldoldoldoldoldoldoldoldol		۲	۲	۲	$oldsymbol{O}$	igodoldoldoldoldoldoldoldoldoldoldoldoldol	igodoldoldoldoldoldoldoldoldoldoldoldoldol	$oldsymbol{O}$		
DB112048.eps	L	Thermal protection													
8	Im	Pick-up (A) tripping between 1.05 and 1.20 Ir	lr = ln x	adjust	able in	amps f	rom 0.7	to 1 x I	n						
L	>	Time delay (s)	tr	non-adjustable											
		Magnetic protection													
		Pick-up (A)	Im	fixed											
		accuracy ±20 %	ComPact NSXm	500	600	600	600	600	800	1000	1250	1250	1250		
		Time delay	tm	fixed											
		Neutral protection													
		Unprotected neutral	4P 3D	no det	ection										
_		Fully protected neutral 4P	4P 4D	1 x lr											

[1] If the circuit breakers are used in high-temperature environments, the setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Select your protection Protection of distribution systems ComPact NSX TM thermal-magnetic and MA magnetic trip units

TM thermal-magnetic and MA magnetic trip units can be used on ComPact NSX100/160/250 circuit breakers with performance levels B/F/H/N/S/L. TM trip units are available in 2 versions:

■ TM-D, for the protection of distribution cables

TM-G, with a low threshold, for the protection of generators or long cable lengths.

В

ComPact NSX250 F

TM-D and TM-G thermal-magnetic trip units

Circuit breakers equipped with thermal-magnetic trip units are used mainly in industrial and commercial electrical distribution applications:

TM-D, for protection of cables on distribution systems supplied by transformers

TM-G, with a low pick-up for generators (lower short-circuit currents than with transformers) and distribution systems with long cable lengths (fault currents limited by the resistance of the cable).

Protection

Thermal protection (Ir)

Thermal overload protection based on a bimetal strip providing an inverse time curve I²t, corresponding to a temperature rise limit. Above this limit, the deformation of the strip trips the circuit breaker operating mechanism.

This protection operates according to:

Ir that can be adjusted in amps from 0.7 to 1 times the rating of the trip unit (16 A to 250 A), corresponding to settings from 11 to 250 A for the range of trip units a non-adjustable time delay, defined to ensure protection of the cables.

Magnetic protection (Im)

Short-circuit protection with a fixed or adjustable pick-up Im that initiates instantaneous tripping if exceeded.

TM-D: fixed pick-up, Im, for 16 to 160 A ratings and adjustable from 5 to 10 x In for 200 and 250 A ratings

■ fixed pick-up for 16 to 63 A ratings.

Protection against insulation faults

Two solutions are possible by adding:

- a Vigi add-on acting directly on the trip unit of the circuit breaker
- a Vigirex relay connected to an MN or MX voltage release.

Protection versions

- 3-pole:
- \square 3P 3D: 3-pole frame (3P) with detection on all 3 poles (3D)
- □ 3P 2D: 3-pole frame (3P) with detection on 2 poles (2D).
- 4-pole⁻

□ 4P 3D: 4-pole frame (4P) with detection on 3 poles (3D).

□ 4P 4D: 4-pole frame (4P) with detection on all 4 poles (same threshold for phases and neutral).

MA magnetic trip units

In distribution applications, circuit breakers equipped with MA magnetic-only trip units are used for:

short-circuit protection of secondary windings of LV/LV transformers with overload protection on the primary side.

as an alternative to a switch-disconnector at the head of a switchboard in order to provide short-circuit protection.

Their main use is however for motor protection applications, in conjunction with a thermal relay and a contactor or motor starter.

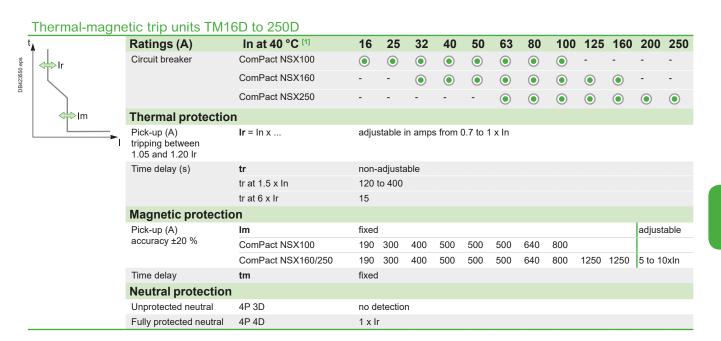
Protection

Magnetic protection (Im)

Short-circuit protection with an adjustable pick-up Im that initiates instantaneous tripping if exceeded.

Im = In x ... set in amps on an adjustment dial 🖉 covering the range 6 to 14 x In for 2.5 to 100 A ratings or 9 to 14 In for 150 to 220 A ratings.

Protection versions


- 3-pole (3P 3D): 3-pole frame (3P) with detection on all 3 poles (3D).
- 4-pole (4P 3D): 4-pole frame (4P) with detection on 3 poles (3D).

Note: All the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

DB423550.eps

Select your protection

Protection of distribution systems ComPact NSX TM thermal-magnetic and MA magnetic trip units

Thermal-magnetic trip units TM16G to 250G

	Ratings (A)	In at 40 °C [1]	16	25	40	63	80	100	125	160	200	250		
	Circuit breaker	ComPact NSX100		۲	۲	۲	۲	۲	-	-	-	-		
	Circuit breaker Thermal protectio Pick-up (A) tripping between 1.05 and 1.20 lr Time delay (s) Magnetic protectio Pick-up (A) accuracy ±20 % Time delay Neutral protection	ComPact NSX160	-	۲	۲	۲	۲	۲		۲	-	-		
		ComPact NSX250	-	-	-	-	-	-	-	۲		$oldsymbol{O}$		
>lm	Thermal protection	า												
→	tripping between	Ir = In x	adjusta	adjustable in amps from 0.7 to 1 x In										
Ti	Time delay (s)	tr	non-ac	ljustable	9									
		tr at 1.5 x In	120 to 400											
		tr at 6 x Ir	-											
	Magnetic protectio	n												
		Im	fixed											
	accuracy ±20 %	ComPact NSX100	63	80	80	125	200	320	-	-	-	-		
		ComPact NSX160	-	80	80	125	200	320	440	440	-	-		
		ComPact NSX250	-	-	-	-	-	-	-	440	440	520		
	Time delay	tm	fixed											
	Neutral protection													
	Unprotected neutral	4P 3D	no											
	Fully protected neutral	4P 4D	1 x lr											

[1] For temperatures greater than 40 °C, the thermal protection characteristics are modified. See the temperature derating table.

Magnetic trip units MA 2.5 to 220

▲	Ratings (A)	In at 65 °C [1]	2.5	6.3	12.5	25	50	100 [1]	150	220
	Circuit breaker	ComPact NSX100	۲	۲	۲	۲	۲	۲	-	-
		ComPact NSX160	-	-	-	۲	۲	۲	۲	-
 ←> Im		ComPact NSX250	-	-	-	-	-	۲	۲	۲
	Instantaneous	magnetic protection								
	 Pick-up (A) I accuracy ±20 % 	Im = In x	,		6 to 14 x In 9, 10, 11, 1				9 to 14	s 9, 10, 11
	Time delay (ms) tm fixed									

[1] MA100 3P adjustable from 6 to 14 x In. MA100 4P adjustable from 9 to 14 x In.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Select your protection **Protection of distribution systems** Overview of functions

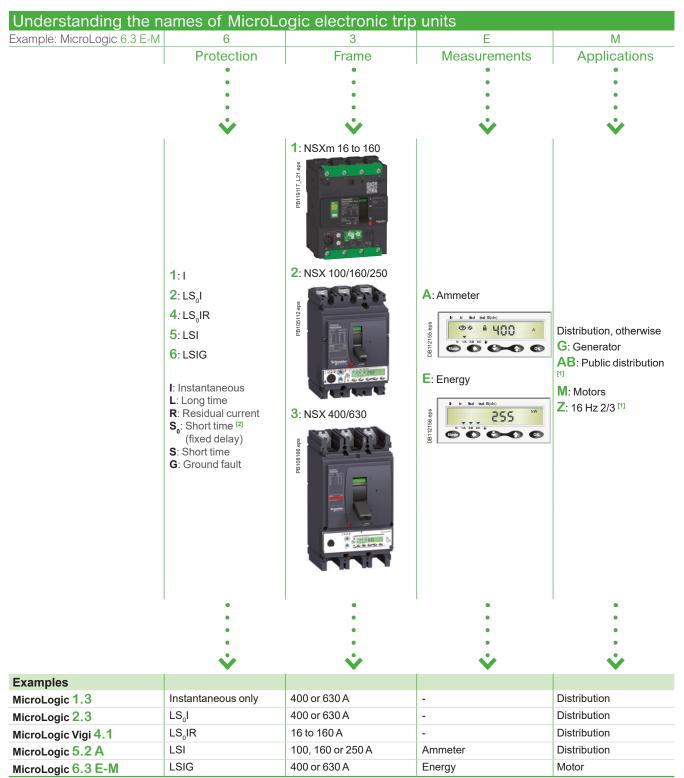
B103260_A23P-30_63eps

Measurement

Energy management is the challenge of present and future generations. To meet this requirement MicroLogic E incorporates all the measuring functions of a power meter.

Diagnostics & Maintenance

Optimal continuity of services as well as extended life of equipment is one of customer main concerns. For that purpose MicroLogic A and E trip units contributes to corrective, preventive and predictive maintenance.


Protection

MicroLogic 5 (LSI), 6 (LSIG) and 7 (LSIR) offer a large long time delay setting range (0.4 to 1 xln) and protection accuracy for a wide temperature range (-25 to +70 C).

Communication

- Protection Control Unit, provides local information for network operation and maintenance, as well as remote information for higher functions of control, monitoring, energy efficiency and assets management.
- To comply with those requirements MicroLogic trip unit and Enerlin'X communication system provides access to status, electrical values and devices control using Ethernet and Modbus SL communication protocols.

Protection of distribution systems ComPact NSXm + NSX circuit breakers trip units

[1] AB-Z: except NSXm and NSX R, HB1, HB2.

[2] LS₀I protection is standard on MicroLogic 2. To ensure selectivity, it offers short-time protection S₀ with a non-adjustable delay and instantaneous protection.

Select your protection Protection of distribution systems ComPact NSX MicroLogic 2 and 1.3 trip units

MicroLogic 2 trip units can be used on ComPact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L/R/ HB1/HB2.

They provide:

- standard protection of distribution cables
- indication of:
- □ overloads (via LEDs)

□ overload tripping (via the SDx relay module).

Micrologic 2.2 **R112050** 3000A

В

SDx remote indication relay module with its terminal block

MicroLogic 2

Circuit breakers equipped with MicroLogic 2 trip units can be used to protect distribution systems supplied by transformers. For generators and long cables, MicroLogic 2 G trip units offer better suited low pick-up solutions (see page B-50).

Protection

Settings are made using the adjustment dials with fine adjustment possibilities.

Overloads: Long time protection (Ir)

Inverse time protection against overloads with an adjustable current pick-up Ir set using a dial and a non-adjustable time delay tr.

Short-circuits: Short-time protection with fixed time delay (Isd)

Protection with an adjustable pick-up Isd. Tripping takes place after a very short delay used to allow selectivity with the downstream device.

Short-circuits: Non-adjustable instantaneous protection

Instantaneous short-circuit protection with a fixed pick-up.

Neutral protection

On 3-pole circuit breakers, neutral protection is not possible.

On four-pole circuit breakers, neutral protection may be set using a three-position switch

- 4P 3D: neutral unprotected
- □ 4P 3D + N/2: neutral protection at half the value of the phase pick-up, i.e. 0.5 x Ir
- □ 4P 4D: neutral fully protected at Ir.

Indications

Front indications

Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

- Orange overload pre-alarm LED: steady on when I > 90 % Ir.
- Red overload LED: steady on when I > 105 % Ir.

Remote indications

An overload trip signal can be remoted by installing an SDx relay module inside the circuit breaker.

This module receives the signal from the MicroLogic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is reclosed. For description, see page C-28.

MicroLogic 1.3 M for magnetic protection only

MicroLogic 1.3 M trip units provide magnetic protection only, using electronic technology. They are dedicated to 400/630 A 3-poles (3P 3D) circuit breakers or 4-pole circuit breakers with detection on 3 poles (4P, 3D) and are used in certain applications to replace switch-disconnectors at the head of switchboards. They are especially used in 3-poles versions for motor protection, see page B-30.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

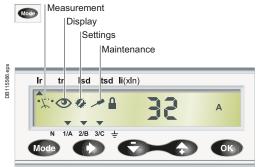
Protection of distribution systems ComPact NSX MicroLogic 2 and 1.3 trip units

Ν	licroLogic 2												
[≈] t		Ratings (A)	In at 40 °C [1]		40	100	160	250	400	630			
DB425380.eps	لله ال	Circuit breaker	ComPact NSX100		igodoldoldoldoldoldoldoldoldoldoldoldoldol		-	-	-	-			
DB42	- (ComPact NSX160		\bigcirc			-	-	-			
			ComPact NSX250						-	-			
	< lsd		ComPact NSX400		-	-	-		۲	-			
	i		ComPact NSX630		-	-	-	•	•				
	I	L Long-time pro	taction					0	0	0			
		Pick-up (A)		lo	value d	opondin	a on trin	unit ratin	g (In) and	l cotting (on dial		
		tripping between	In = 40 A	lo =	18	18	20	23	25	28	32	36	40
		1.05 and 1.20 Ir	ln = 100 A	lo =	40	45	50	55	63	70	80	90	100
			In = 160 A	lo =	63	70	80	90	100	110	125	150	160
			In = 250 A (NSX250)	lo =	100	110	125	140	160	175	200	225	250
			In = 250 A (NSX400)	lo =	70	100	125	140	160	175	200	225	250
			In = 400 A	lo =	160	180	200	230	250	280	320	360	400
			In = 630 A	lo =	250	280	320	350	400	450	500	570	630
			Ir = lo x				nt setting) for each		.9 to 1 (0. f Io	9 - 0.92 -	- 0.93 - 0	.94 - 0.95	5 - 0.96
		Time delay (s)	tr		non-ad	justable							
		accuracy 0 to -20%		1.5 x lr	400								
				6 x Ir	16								
				7.2 x lr	11								
		Thermal memory			20 minu	utes befo	ore and a	fter trippi	ng				
		S Short-time pro	otection with fixed	time d	elay								
		Pick-up (A) accuracy ±10 %	lsd = lr x		1.5	2	3	4	5	6	7	8	10
		Time delay (ms)	tsd		non-ad	justable							
			Non-tripping time		20								
			Maximum break time		80								
		I Instantaneous	s protection										
		Pick-up (A)	li non-adjustable		600	1500	2400	3000	4800	6900			
		accuracy ±15 %	Non-tripping time Maximum break time		10 ms 50 ms								

[1] If the trip units are used in high-temperature environments, the MicroLogic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

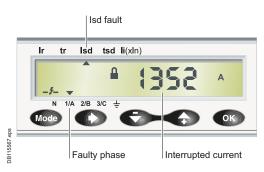
MicroLogic 1.3 M In at 65 °C [1] Ratings (A) 320 500 t≱ DB425381.eps Circuit breaker ComPact NSX400 \bigcirc -ComPact NSX630 \bigcirc \bigcirc ⊳ Isd S Short-time protection Pick-up (A) lsd Adjustable directly in amps accuracy ±15 % 9 settings: 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500 A 1 li 9 settings: 1600, 1920, 2240, 2560, 2880, 3200, 3520, 3840, 4160 A Time delay (ms) tsd Non-adjustable Non-tripping time 10 Maximum break time 60 I Instantaneous protection 4800 6500 Pick-up (A) li non-adjustable accuracy ±15 % Non-tripping time 0 Maximum break time 30 ms

[1] Motor standards require operation at 65 °C. Circuit-breaker ratings are derated to take this requirement into account.


Select your protection **Protection of distribution systems** ComPact NSX MicroLogic 5 / 6 A or E trip units

MicroLogic 5 / 6 A (Ammeter) or E (Energy) trip units can be used on ComPact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L/R/HB1/HB2. They all have a display unit.

They offer basic LSI protection (MicroLogic 5) or LSI and ground-fault protection G (MicroLogic 6).


They also offer measurement, alarm and communication functions.

Trip unit menus.

В

Display of interrupted current.

Protection

Settings can be adjusted in two ways, using the dials A and/or the keypad C . The keypad can be used to make fine adjustments in 1 Å steps below the maximum value defined by the setting on the dial. Access to setting modifications via the keypad is protected by a locking function a displayed on the screen and controlled by a microswitch . The lock is activated automatically if the keypad is not used for 5 minutes. Access to the microswitch is protected by a transparent lead-sealable cover. With the cover closed, it is still possible to display the various settings and measurements using the keypad.

Overloads: Long time protection (Ir)

Inverse time protection against overloads with an adjustable current pick-up $lr\,$ set using a dial or the keypad for fine adjustments. The time delay $tr\,$ is set using the keypad.

Short-circuits: Short-time protection (Isd)

Short-circuit protection with an adjustable pick-up **Isd** and adjustable time delay **tsd**, with the possibility of including a portion of an inverse time curve (I²t On).

Short-circuits: Instantaneous protection (Ii) Instantaneous protection with adjustable pick-up **Ii**.

Additional ground fault protection (Ig) on MicroLogic 6

Residual type ground-fault protection with an adjustable pick-up **Ig** (with Off position) and adjustable time delay **tg**. Possibility of including a portion of an inverse time curve (I²t On).

Neutral protection

On 4-pole circuit breakers, this protection can be set via the keypad:

- □ Off: neutral unprotected
- □ 0.5: neutral protection at half the value of the phase pick-up, i.e. 0.5 x Ir
- □ 1.0: neutral fully protected at Ir

□ OSN: Oversized neutral protection at 1.6 times the value of the phase pick-up. Used when there is a high level of 3rd order harmonics (or orders that are multiples of 3) that accumulate in the neutral and create a high current. In this case, the device must be limited to Ir = $0.63 \times In$ for the maximum neutral protection setting of $1.6 \times Ir$. ■ With 3-pole circuit breakers, the neutral can be protected by installing an external neutral sensor with the output (T1, T2) connected to the trip unit.

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of MicroLogic control units to provide zone selective interlocking for short-time (Isd) and ground-fault (Ig) protection, without a time delay. For ComPact NSX 100 to 250, the ZSI function is available only in relation to the upstream circuit breaker (ZSI out).

Display of type of fault

On a fault trip, the type of fault (Ir, Isd, Ii, Ig), the phase concerned and the interrupted current are displayed. An external power supply is required.

Indications

Front indications

Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

- Orange overload pre-alarm LED: steady on when I > 90 % Ir.
- Red overload LED: steady on when I > 105 % Ir.

Remote indications

An SDx relay module installed inside the circuit breaker can be used to remotely access to the following information:

overload trip

overload prealarm (MicroLogic 5) or ground fault trip (MicroLogic 6). This module receives the signal from the MicroLogic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

These outputs can be reprogrammed to be assigned to other types of tripping or alarm. The module is described in detail in the section dealing with accessories.

Select your protection **Protection of distribution systems** ComPact NSX MicroLogic 5 / 6 A or E trip units

Protection MicroLog	jic 5 / 6 A or E	trip units	6										
	Ratings (A)	In at 40	° C [1]		40 ^[2]	100	160	250	400	630			
a ^t ≜ ⊶hr	Circuit breaker	ComPact	NSX100		۲	۲	-	-	-	-			
		ComPact	NSX160		\bigcirc	\bigcirc		-	-	-			
tr 🖌		ComPact	NSX250					۲	-	-			
Licd Licd		ComPact	NSX400			-			۲	-			
		ComPact								0			
		ComPact	1137030		-	-	-	-	۲	۲			
	L Long-time	protectio	on										
	Pick-up (A)	Ir =	dial setting		value o	dependi	ng on tri	p unit ra	ting (In)	and setti	ing on d	ial	
	tripping between 1.05 and 1.20 Ir		In = 40 A	lo =	18	18	20	23	25	28	32	36	40
	1.05 and 1.20 If		In = 100 A	lo =	40	45	50	55	63	70	80	90	100
			In = 160 A	lo =	63	70	80	90	100	110	125	150	160
			In = 250 A	lo =	100	110	125	140	160	175	200	225	250
			In = 400 A	lo =	160	180	200	230	250	280	320	360	400
			In = 630 A	lo =	250	280	320	350	400	450	500	570	630
	Time delay (a)	4 -1	keypad set	-		-			elow ma:		alue set	on dial	
	Time delay (s) accuracy 0 to	tr =	keypad set	1.5 x lr	0.5 15	1 25	2 50	4 100	8 200	16 400			
	-20 %			6 x lr	0.5	1	2	4	8	16	00 6		
				7.2 x lr	0.35	0.7	1.4	2.8	5.5	11			
	Thermal memory							after tri					
	S Short-time	e protecti	on with ad	justable	e time (delay							
	Pick-up (A)	•	dial setting	-							8	10	
	accuracy ±10 %		for MicroLc	ogic 5	Fine a	djustme	nt in 0.5	x Ir step	s using	the keyp	ad		
			keypad set for MicroLc	•	Adjust	ment in	steps of	0.5 x lr	over the	range 1	.5 x Ir to	10 x Ir	
	Time delay (s)	tsd =	keypad	I ² Off	0	0.1	0.2	0.3	0.4				
			setting	l²On	-	0.1	0.2	0.3	0.4				
			ng time (ms)		20	80	140	230	350				
			break time (m	ıs)	80	140	200	320	500				
	Instantane	-											
	Pick-up (A) accuracy ±15 %	li = ln x	keypad set	ting					over the 250 to 40				
		Non-trippi Maximum	ng time break time		10 ms 50 ms								
	G Ground-fa	ult protee	ction - for	MicroLo	ogic 6 A	A or E							
t A	Pick-up (A)	lg = ln x	dial setting										
lr tr	accuracy ±10 %		In = 40 A		0.4	0.4	0.5	0.6	0.7	0.8	0.9	1	Off
tr			In > 40 A		0.2	0.3	0.4	0.5	0.6	0.7	0.8	1	Off
									s using th	ne keypa	ad		
tsd	Time delay (s)	tg =	keypad	I ² Off	0	0.1	0.2	0.3	0.4				
			setting	l²On	-	0.1	0.2	0.3	0.4				
			ng time (ms)		20	80	140	230	350				
I	- .		break time (m	ıs)	80	140	200	320	500				
	Test	Ig function	1		built-in								

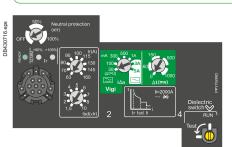
[1] If the trip units are used in high-temperature environments, the MicroLogic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

[2] For 40 A rating, the neutral N/2 adjustment is not possible.

Select your protection **Protection of distribution systems** ComPact NSXm MicroLogic Vigi 4.1 trip unit with integrated earth leakage protection

ComPact NSXm circuit breakers up to 160 A can be ordered with Micologic Vigi 4.1 trip unit with performance levels E/B/F/N/H. They provide:

standard protection of distribution cables


earth leakage protection

indication of:

□ overload alarming (via LEDs and via SDx module)

overload tripping (via the SDx module)
 earth leakage alarming (via the SDx module)

□ earth leakage tripping (via front face screen and the SDx module).

ComPact NSXm MicroLogic Vgi 4.1.

MicroLogic Vigi 4.1

Circuit breakers equipped with MicroLogic Vigi 4.1 trip units can be used to protect distribution systems supplied by transformers.

Short-circuit and overload protection

- Settings are made using the adjustment dials.
- Overloads: Long time protection (Ir)

Inverse time protection against overloads with a wide range adjustable current pick-up Ir set using a dial and a non-adjustable time delay tr.

Short-circuits: Short-time protection with fixed time delay (Isd)

Protection with an adjustable pick-up Isd. Tripping takes place after a very short delay used to allow selectivity with the downstream device.

Short-circuits: Non-adjustable instantaneous protection

Instantaneous short-circuit protection with a fixed pick-up.

Neutral protection

- On 3-pole circuit breakers, neutral protection is not possible.
- On 4-pole circuit breakers, neutral protection may be set using a three-position switch:
- □ OFF: neutral unprotected
- $\square~50~\%$ $^{\rm [1]}$: neutral protection at half the value of the phase pick-up, i.e. 0.5 x Ir
- □ 100 %: neutral fully protected at Ir.

Earth leakage protection

Protection with an adjustable leakage level (I Δ n) with an adjustable delay (Δ t).

Compliance with standards

- IEC 60947-2, annex B.
- IEC 60755, class A, immunity to DC components up to 6 mA.
- Operation down to -25 °C as per VDE 664.

Power supply

It is self-powered internally and therefore does not require any external source. It's still working even when supplied by only two phases.

Sensitivity $I\Delta n$ (A)

- Type A: 30mA 100mA 300mA 500mA 1A.
- Type AC: 30mA 100mA 300mA 1A 3A 5A.

Intentional delay Δt (ms)

0 - 60^[2] - 150^[2] - 500^[2] - 1000^[2].

Operated voltage

200...440 V AC - 50/60 Hz.

Operating safety

The earth leakage protection is a user safety device. It must be tested at regular intervals (every 6 months) via test button.

[1] On 100A and 160A circuit breakers only.

[2] If the sensitivity is set to 30 mA, there is no time delay, whatever the time-delay setting.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

B-14 Life Is On Schneider

В

Protection of distribution systems ComPact NSXm MicroLogic Vigi 4.1 trip unit with integratedd earth leakage protection

Indications

Front indications

Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of an overload or short-circuit fault.

- Orange overload pre-alarm LED: steady on when I > 90 % Ir.
- Red overload LED: steady on when I > 105 % Ir.
- Screen that indicate an earth leakage fault trip reset when product is powered.
- Alarming and fault differentiation

A side module SDx can be installed to provide alarming and fault differenciation:

- overload alarm (I > 105 % Ir)
- overload trip indication
- earth leakage alarm ($I\Delta n > 80$ % threshold)
- earth leakage trip indication.

This module receives the signal from the MicroLogic electronic trip unit via an optical link and makes it available on the terminal block through NO/NC dry contacts. The signal is cleared when the circuit breaker is restarted.

For description, see page C-11.

MicroLogic Vigi 4.1

s t	Ratings (A)	In at 40 °C [1]		25	50	100	160					
	Circuit breaker	ComPact NSXm		$oldsymbol{O}$	\bigcirc	\odot	۲					
	L Long-time prot	ection										
	Pick-up (A)		Ir	value	dependi	ing on tr	ip unit ra	ating (In)	and set	tting on	dial	
<-> Isd	tripping between	In = 25 A	Ir =	10	11	12	14	16	18	20	22	25
	1.05 and 1.20 Ir	In = 50 A	lr =	20	22	25	28	32	36	40	45	50
► >	ì	In = 100 A	lr =	40	45	50	56	63	70	80	90	100
		In = 160 A	Ir =	63	70	80	90	100	115	130	145	160
	Time delay (s)	tr		non-a	djustable	е						
	accuracy 0 to -20%			200								
			6 x Ir	8								
			7.2 x lr	5								
	Thermal memory				nutes be	fore and	d after tr	pping				
	Short-time prot	ection with fixed	l time d	elay								
	Pick-up (A) accuracy ±15 %	Isd = lr x		1.5	2	3	4	5	6	7	8	10
	Time delay (ms)	tsd		non-a	djustable	е						
		Non-tripping time		20								
		Maximum break tir	me	80								
	Instantaneous	protection										
_ع t	Pick-up (A)	li non-adjustable		375	750	1500	2000					
3015.e	accuracy ±15 %	Non-tripping time		10 ms			5 ms					
t DB453012:ebs		Maximum break tir	me	50 ms								
	R Earth leakage p	rotection										
	Sensitivity $I_{\Delta n}(A)$	Adjustable	Ι _{Δn} =	0.03	0.1	0.3	0.5	1	3	5		
		Туре		Aand	AC				AC			
	Time delay∆t (ms)	Adjustable	∆t =	0	60 [2]	150 [2]	500 [2]	1000 [2]				
		Maximum break ti	me (ms)	< 40	< 140	< 300	< 800	< 1500				

[1] If the circuit breakers are used in high-temperature environments, the setting must take into account the thermal limitations of the circuit breaker.

[2] If the sensitivity is set to 30 mA, there is no time delay, whatever the time-delay setting.

Select your protection Protection of distribution systems ComPact NSX MicroLogic Vigi 4 trip unit with integrated earth leakage protection

The ComPact NSX range is now complemented with a new type of MicroLogic trip unit including both circuit protection and earth leakage protection. It means that the earth leakage protection, previously located within the Vigi Add-on, will be integrated within the existing size of the MicroLogic trip unit. MicroLogic Vigi 4 is compliant with IEC 60947-2 annex B.

В

MicroLogic Vigi 4 (LS_IR).

MicroLogic Vigi 4 AL (LS I + Earth Leakage Alarm).

MicroLogic Vigi 4

There are two versions of MicroLogic Vigi 4:

■ distribution protection including Earth Leakage Protection (LS_IR)

distribution protection including Earth Leakage Alarm (LS I + Earth Leakage Alarm).

Protections

Settings are made using the rotary dial with fine adjustment capabilities.

Short circuit and overload protections

Overload: long-time protection (Ir)

Inverse time protection against overload with an adjustable current pick-up Ir set using a dial and a non-adjustable time delay tr.

Short-circuit: short-time protection with fixed time delay (Isd)

That protection is set with an adjustable pick-up lsd. The tripping takes place after a very short time used to allow selectivity with downstream devices.

Short circuit: non-adjustable instantaneous protection (with a fix pick-up)

Neutral protection

On a 3-pole device, neutral protection is not possible

On a 4-pole device, neutral protection may be set using the dedicated coding wheel to meet the following configurations: 4P 3D, 4P 3D + N/2 or 4P 4D (same as for MicroLogic 2).

Earth leakage protections

Adjustable leakage threshold (IAn) and adjustable time delay threshold (Dt) by using the two dials on the green area of the trip unit.

Power supply

The trip unit is self supplied, and so does not need any external source. It works even when fed by 2 phases only.

Sensitivity I∆n (A)

Type A: 30mA - 100mA - 300mA - 500mA - 1A - 3A - 5A (for the ratings 40 to 250A) Type A: 300mA - 500mA - 1A - 3A - 5A - 10A (for the ratings 400 to 570A).

Caution: "OFF" setting of IAn is possible. It cancels the earth leakage protection, in that case, the circuit breaker with MicroLogic Vigi 4 behaves as a standard circuit breaker. That "OFF" position is located on the highest side of the coding wheel.

Intentional delay $I\Delta t$ (s)

Case I Δ n = 30mA: Δ t0 sec (whatever the setting)

Case I Δ n > 30mA: Δ t 0 – 60ms – 150ms – 500ms – 1sec (by setting)

Operated voltage

200 to 440 VAC (only) - 50/60 Hz

Operating safety

The earth leakage protection is a user safety device. It must be regularly tested using the test button (T) that simulates a real current leakage within the toroid. When $I\Delta n$ is set on the OFF position, press the T will cancel any test.

As for standard circuit breaker, the circuit breaker with MicroLogic Vigi 4 can be reset after any fault by operating an OFF/ON procedure.

Specific for the circuit breaker with MicroLogic Vigi 4 Alarm (AL), after testing as well as after a real leakage fault, it can be reset by pressing more than 3 seconds the test button (T), to avoid switching OFF the device.

Protection of distribution systems ComPact NSX MicroLogic Vigi 4 trip unit with integrated earth leakage protection

Indications

Front indications

Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in case of a fault.

- Orange overload pre-alarm LED: steady ON when I > 90% Ir.
- Red overload LED: steady ON when I > 105% Ir.

Yellow Screen: indicates an earth leakage fault (reset when operating OFF/ON for the "trip" or when pressing >3sec the T button for the Alarm).

Alarming and fault differentiation

An overload trip signal can be remotely available by installing an SDx relay module inside the circuit breaker on both "trip" and "alarm" versions. An earth leakage trip signal can be remotely available by installing an SDx

module, only on the "trip" version. An earth leakage alarm signal (MicroLogic Vigi 4 AL) can be remotely available on the SDx, for the circuit breaker with MicroLogic Vigi 4 Alarm".

This module receives the signal from the MicroLogic trip unit via an optical link and

makes it available on the terminal block. The signal is reset when the breaker is operated.

MicroLogic Vigi 4

DB423015.eps

nelegie rigi												
	Ratings (A)	In at 40 °C [1]		40	100	160	250	400	570			
⇒lr	Circuit breaker	ComPact NSX100		۲	$oldsymbol{O}$							
		ComPact NSX160		\bigcirc	\odot	\bigcirc						
\backslash		ComPact NSX250		\bigcirc	\odot	۲	۲					
lsd		ComPact NSX400						۲				
		ComPact NSX630						0	\bigcirc			
>	L Long-time prote	ection						0				
I	Pick-up (A)		lo	value o	lependi	na on th	e rating	(In) and	the dial	settina		
	tripping between	In = 40 A	lo =	18	18	20	23	25	28	32	36	40
	1.05 and 1.20 lr	ln = 100 A	lo =	40	45	50	55	63	70	80	90	100
		In = 160 A	lo =	63	70	80	90	100	110	125	150	160
		In = 250 A	lo =	100	110	125	140	160	175	200	225	250
		In = 400 A	lo =	160	180	200	230	250	280	320	360	400
		ln = 570 A	lo =	250	280	320	350	400	450	500	570	570
		lr = lo x		9 fine a	adjustm	ent setti	ngs fror	n 0.9 to 1	(0.9-	0.92 (0.98 - 1)	
	Time delay (s)	tr		non-ac	ljustable	е	-				,	
	accuracy 0 to -20%	at	1.5 x lr	tr = 400)s							
		at	6 x lr	tr = 16	s							
		at	7.2 x lr	tr = 11	s							
	Thermal memory			20 min	utes be	fore and	d after tr	pping				
	S Short-time prot	ection with fixed	time d									
	Pick-up (A)	Isd = lr x		1.5	2	3	4	5	6	7	8	10
	accuracy ±10 %											
	Time delay (ms)	tsd		non-ac	ljustabl	е						
		Non-tripping time		20								
		Maximum break tim	ne	80								
	Instantaneous	protection										
	Pick-up (A)	li non-adjustable		600	1500	2400	3000	4800	6900			
	accuracy ±15 %	Non-tripping time		10 ms								
		Maximum break tim	ne	50 ms								
	R Earth leakage p	rotection / Earth	leakag	je aları	n							
	Sensitivity (A)	Type A, adjustable	、 ·	,								
1		In = 40 A		0.03	0.03	0.1	0.3	0.5	1	3	5	OFF
₽		In = 100 A	l∆n =	0.03	0.03	0.1	0.3	0.5	1	3	5	OFF
L€ ∆t		In = 160 A	l∆n =	0.03	0.03	0.1	0.3	0.5	1	3	5	OFF
₩ <u></u>		In = 250 A	l∆n =	0.03	0.03	0.1	0.3	0.5	1	3	5	OFF
I		In = 400 A	l∆n =	0.3	0.3	0.5	1	3	5	10	10	OFF
		In = 570 A	l∆n =	0.3	0.3	0.5	1	3	5	10	10	OFF
	Time delay∆t (ms)	Adjustable	∆t =	0	60 [2]	150 [2]	500 [2]	1000 [2]				
		Maximum break tim	ne (ms)	<40	<140	<300	<800	<1500	ms			

[1] For the use in high temperature environment, take into account the thermal limitation of the breaker.

[2] The time delay (Δt) is mandatory and forced to " Δt = 0" when the I Δ n dial is set on 30mA (0.03). The time delay has no effect when the dial I Δ n is set to the "OFF" position.

Select your protection Protection of distribution systems ComPact NSX MicroLogic Vigi 4 trip unit with integrated earth leakage protection

The ComPact NSX range is now complemented with a new type of MicroLogic trip unit including both circuit protection and earth leakage protection. It means that the earth leakage protection, previously located within the Vigi Add-on, will be integrated within the existing size of the MicroLogic trip unit. MicroLogic Vigi 4 is compliant with IEC 60947-2 annex B.

В

MicroLogic Vigi 4 (LS_IR).

MicroLogic Vigi 4 AL (LS I + Earth Leakage Alarm).

MicroLogic Vigi 4

There are two versions of MicroLogic Vigi 4:

■ distribution protection including Earth Leakage Protection (LS_IR)

distribution protection including Earth Leakage Alarm (LS I + Earth Leakage Alarm).

Protections

Settings are made using the rotary dial with fine adjustment capabilities.

Short circuit and overload protections

Overload: long-time protection (Ir)

Inverse time protection against overload with an adjustable current pick-up Ir set using a dial and a non-adjustable time delay tr.

Short-circuit: short-time protection with fixed time delay (Isd)

That protection is set with an adjustable pick-up lsd. The tripping takes place after a very short time used to allow selectivity with downstream devices.

Short circuit: non-adjustable instantaneous protection (with a fix pick-up)

Neutral protection

On a 3-pole device, neutral protection is not possible

On a 4-pole device, neutral protection may be set using the dedicated coding wheel to meet the following configurations: 4P 3D, 4P 3D + N/2 or 4P 4D (same as for MicroLogic 2).

Earth leakage protections

Adjustable leakage threshold (IAn) and adjustable time delay threshold (Dt) by using the two dials on the green area of the trip unit.

Power supply

The trip unit is self supplied, and so does not need any external source. It works even when fed by 2 phases only.

Sensitivity I∆n (A)

Type A: 30mA - 100mA - 300mA - 500mA - 1A - 3A - 5A (for the ratings 40 to 250A) Type A: 300mA - 500mA - 1A - 3A - 5A - 10A (for the ratings 400 to 570A).

Caution: "OFF" setting of IAn is possible. It cancels the earth leakage protection, in that case, the circuit breaker with MicroLogic Vigi 4 behaves as a standard circuit breaker. That "OFF" position is located on the highest side of the coding wheel.

Intentional delay $I\Delta t$ (s)

Case I Δ n = 30mA: Δ t0 sec (whatever the setting)

Case I Δ n > 30mA: Δ t 0 – 60ms – 150ms – 500ms – 1sec (by setting)

Operated voltage

200 to 440 VAC (only) - 50/60 Hz

Operating safety

The earth leakage protection is a user safety device. It must be regularly tested using the test button (T) that simulates a real current leakage within the toroid. When $I\Delta n$ is set on the OFF position, press the T will cancel any test.

As for standard circuit breaker, the circuit breaker with MicroLogic Vigi 4 can be reset after any fault by operating an OFF/ON procedure.

Specific for the circuit breaker with MicroLogic Vigi 4 Alarm (AL), after testing as well as after a real leakage fault, it can be reset by pressing more than 3 seconds the test button (T), to avoid switching OFF the device.

Protection of distribution systems ComPact NSX MicroLogic Vigi 4 trip unit with integrated earth leakage protection

Indications

Front indications

Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in case of a fault.

- Orange overload pre-alarm LED: steady ON when I > 90% Ir.
- Red overload LED: steady ON when I > 105% Ir.

Yellow Screen: indicates an earth leakage fault (reset when operating OFF/ON for the "trip" or when pressing >3sec the T button for the Alarm).

Alarming and fault differentiation

An overload trip signal can be remotely available by installing an SDx relay module inside the circuit breaker on both "trip" and "alarm" versions. An earth leakage trip signal can be remotely available by installing an SDx

module, only on the "trip" version. An earth leakage alarm signal (MicroLogic Vigi 4 AL) can be remotely available on the SDx, for the circuit breaker with MicroLogic Vigi 4 Alarm".

This module receives the signal from the MicroLogic trip unit via an optical link and

makes it available on the terminal block. The signal is reset when the breaker is operated.

MicroLogic Vigi 4

DB423015.eps

nelegie rigi												
	Ratings (A)	In at 40 °C [1]		40	100	160	250	400	570			
⇒lr	Circuit breaker	ComPact NSX100		۲	$oldsymbol{O}$							
		ComPact NSX160		\bigcirc	\odot	\bigcirc						
\backslash		ComPact NSX250		\bigcirc	\odot	۲	۲					
lsd		ComPact NSX400						۲				
		ComPact NSX630						0	\bigcirc			
>	L Long-time prote	ection						0				
I	Pick-up (A)		lo	value o	lependi	na on th	ne rating	(In) and	the dial	settina		
	tripping between	In = 40 A	lo =	18	18	20	23	25	28	32	36	40
	1.05 and 1.20 lr	ln = 100 A	lo =	40	45	50	55	63	70	80	90	100
		In = 160 A	lo =	63	70	80	90	100	110	125	150	160
		In = 250 A	lo =	100	110	125	140	160	175	200	225	250
		In = 400 A	lo =	160	180	200	230	250	280	320	360	400
		ln = 570 A	lo =	250	280	320	350	400	450	500	570	570
		lr = lo x		9 fine a	adjustm	ent setti	ngs fror	n 0.9 to 1	(0.9-	0.92 (0.98 - 1)	
	Time delay (s)	tr		non-ac	ljustable	е	-				,	
	accuracy 0 to -20%	at	1.5 x lr	tr = 400)s							
		at	6 x lr	tr = 16	s							
		at	7.2 x lr	tr = 11	s							
	Thermal memory			20 min	utes be	fore and	d after tr	pping				
	S Short-time prot	ection with fixed	time d									
	Pick-up (A)	Isd = lr x		1.5	2	3	4	5	6	7	8	10
	accuracy ±10 %											
	Time delay (ms)	tsd		non-ac	ljustabl	е						
		Non-tripping time		20								
		Maximum break tim	ne	80								
	Instantaneous	protection										
	Pick-up (A)	li non-adjustable		600	1500	2400	3000	4800	6900			
	accuracy ±15 %	Non-tripping time		10 ms								
		Maximum break tim	ne	50 ms								
	R Earth leakage p	rotection / Earth	leakag	je aları	n							
	Sensitivity (A)	Type A, adjustable	、 ·	,								
1		In = 40 A		0.03	0.03	0.1	0.3	0.5	1	3	5	OFF
₽		In = 100 A	l∆n =	0.03	0.03	0.1	0.3	0.5	1	3	5	OFF
L€ ∆t		In = 160 A	l∆n =	0.03	0.03	0.1	0.3	0.5	1	3	5	OFF
₩ <u></u>		In = 250 A	l∆n =	0.03	0.03	0.1	0.3	0.5	1	3	5	OFF
I		In = 400 A	l∆n =	0.3	0.3	0.5	1	3	5	10	10	OFF
		In = 570 A	l∆n =	0.3	0.3	0.5	1	3	5	10	10	OFF
	Time delay∆t (ms)	Adjustable	∆t =	0	60 [2]	150 [2]	500 [2]	1000 [2]				
		Maximum break tim	ne (ms)	<40	<140	<300	<800	<1500	ms			

[1] For the use in high temperature environment, take into account the thermal limitation of the breaker.

[2] The time delay (Δt) is mandatory and forced to " Δt = 0" when the I Δ n dial is set on 30mA (0.03). The time delay has no effect when the dial I Δ n is set to the "OFF" position.

Select your protection **Protection of distribution systems** ComPact NSX MicroLogic Vigi 7 E trip unit with integrated earth leakage protection

The ComPact NSX range is now complemented with a new type of MicroLogic trip unit including circuit protection, metering and earth leakage protection. It means that the earth leakage protection, previously located within the Vigi Add-on, will be integrated within the existing size of the MicroLogic trip unit. MicroLogic Vigi 7 E is compliant with IEC 60947-2 annex B.

MicroLogic Vigi 7 E (LSIR).

MicroLogic Vigi 7 E AL (LSI + Earth Leakage Alarm).

MicroLogic Vigi 7 E

There are two versions of MicroLogic Vigi 7 E:

distribution protection including Earth Leakage Protection (LSIR)

distribution protection including Earth Leakage Alarm (LSI + Earth Leakage Alarm).

Locking Protection - Parameter Settings

Settings are made using the rotary dial or/and the keypad. The protection parameter settings are locked when the transparent cover is closed and sealed to prevent access to the adjustment dials and the locking/unlocking microswitch. But you can display the various parameters using the keypad even when the cover is closed (and sealed).

Short circuit and overload protections

Overload: long time protection (Ir)

Inverse time protection against overload with an adjustable current pick-up Ir set using the dial or the keypad for fine adjustments. The adjustable time delay tr is set using the keypad only.

Short-circuit: short circuit protection (Isd)

That protection is with an adjustable pick-up lsd and an adjustable time delay tsd. It is possible to include a portion of an inverse time curve (I²t On).

Short circuit: Instantaneous protection (Ii)

Instantaneous protection with an adjustable protection pick-up li.

Neutral protection

 On a 4-pole device, the neutral protection may be set using the dedicated coding wheel to meet the following configurations: 4P 3D, 4P 3D + N/2 or 4P 4D (same as for MicroLogic 5)

• OSN (oversized neutral protection) at 1.6 times the phase pick-up value; useful where there is an high level of 3rd order harmonics (or multiple of 3) that create an over-current within the neutral. In that case the device has to be limited to $Ir = In \times 0.63$ (for each phase) to allow the neutral protection setting to 1.6 x Ir.

Earth leakage protections

Adjustable leakage threshold (I Δ n) using the dial only (without any use of the keypad for fine-tuning) and an adjustable time delay threshold (Δ t) using the keypad only.

Power supply

The MicroLogic trip unit is powered with its own current in order to guarantee the protection functions.

If there is no optional external 24 VDC power supply, the MicroLogic trip unit only works when the circuit breaker is closed. When the circuit breaker is open or the through current is low (15 to 50 A depending on the rating), the MicroLogic trip unit is no longer powered and its display switches off.

- An external 24 VDC power supply for the MicroLogic trip unit is optional for: modifying the setting values when the circuit breaker is open
- displaying measurements when there is a low current through the circuit breaker
- (15 to 50 A depending on the rating) when the circuit breaker is closed

continuing to display the reason for the trip and the breaking current when the circuit breaker is open.

Sensitivity I∆n (A)

- Type A: 30mA 100mA 300mA 500mA 1A 3A 5A (for the ratings 40 to 250A)
- Type A: 300mA 500mA 1A 3A 5A 10A (for the ratings 400 to 570A)

Caution: "OFF" setting of I Δ n is possible, it cancels the earth leakage protection, in that case, the circuit breaker with MicroLogic Vigi 4 behaves as a standard circuit breaker. "OFF" position is located on the highest side of the coding wheel.

Protection of distribution systems ComPact NSX MicroLogic Vigi 7 E trip unit with integrated earth leakage protection

Intentional delay IAt (s)

- Case I∆n = 30mA: ∆t 0 sec
- Case I∆n > 30mA: ∆t 0 60ms 150ms 500ms 1sec

Operated voltage

200 to 440 VAC (only) - 50/60 Hz

Operating safety

The earth leakage protection is a user safety device. It must be regularly tested using the test button (T) that simulates a real current leakage within the toroid. When $I\Delta n$ is set on the OFF position, press the T will cancel any test. As for the standard circuit breaker, the circuit breaker with MicroLogic Vigi 7 E ("Trip" or "Alarm" version) can be reset after any fault by using the keypad.

The MicroLogic Vigi 7 E allows you to set-up a specific "(T) test without tripping" procedure using the keypad.

Display of the type of fault

On a trip, the root cause of the fault (phase and interrupted current) are displayed. An external power supply is needed to ensure this function.

Select your protection **Protection of distribution systems** ComPact NSX MicroLogic Vigi 7 E trip unit with integrated earth leakage protection

Indications

Front indication

Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in case of a fault.

■ Orange overload pre-alarm LED: steady ON when I > 90% Ir.

■ Red overload LED: steady ON when I > 105 % Ir.

Written on keypad: earth leakage fault indication (reset using the keypad) for both "Trip" & "Alarm".

Alarming and fault differentiation

An SDx relay module can be installed inside the earth leakage circuit breaker to remotely access to the following data:

- Overload pre-Alarm
- Overload trip

■ Earth leakage pre-alarm (useful for the "trip" version of the circuit breaker with MicroLogic Vigi 7 E only)

 Earth leakage trip (exist for the "trip" version of thecircuit breaker with MicroLogic Vigi 7 E only)

Earth leakage Alarm without "trip" (circuit breaker with MicroLogic Vigi 7 E AL version only).

This module receives the signal from the MicroLogic electronic trip unit via an optical link and makes it available on the terminal block. The signal is reset when the breaker is operated.

These outputs can be reprogrammed to be assigned to other types of tripping or alarm. The module is deeper described in the section dealing with accessories.

Protection of distribution systems ComPact NSX MicroLogic Vigi 7 E trip unit with integrated earth leakage protection

∞ 🕻 📥 Ir	gic Vigi	Ratings (A)	In at 40 °C [1]		40 ^[2]	100	160	250	400	570			
a î 🕆	1 12,	Circuit breaker	ComPact NSX100			•	100	230	400	570			
tr	L ^{ft on}		ComPact NSX160		0	0							
8 1	L I ² t off				-	-	-	~					
) Iso			ComPact NSX250		$oldsymbol{O}$	۲	igodoldoldoldoldoldoldoldoldoldoldoldoldol	igodoldoldoldoldoldoldoldoldoldoldoldoldol	-				
54	tsd		ComPact NSX400						۲				
	v∰ii _		ComPact NSX630						\bigcirc	\odot			
0		Long-time prot											
		Pick-up (Å)	Dial setting		value	depend	ing on th	ne rating	(In) and	the dia	l setting	g	
		tuine in a la structure	lr	1	10	40	20	00	05	00	20	20	40
		tripping between 1.05 and 1.20 lr	In = 40 A In = 100 A	lo = lo =	18 40	18 45	20 50	23 55	25 63	28 70	32 80	36 90	40 100
		1.05 and 1.20 Ir	ln = 160 A	lo =	40 63	70	80	90	100	110	125	90 150	160
			$\ln = 250 \text{ A}$	lo =	100	110	125	140	160	175	200	225	250
			ln = 400 A	lo =	160	180	200	230	250	280	320	360	400
			In = 570 A	lo =	250	280	320	350	400	450	500	570	570
				10 -									
		Time a delevi (a)	Keypad setting		fine adjustment in 1A step below the max value set on the dia							n the dia	al
		Time delay (s)	tr Keypad setting		0.5		1	2	4	8	16		
		accuracy 0 to -20%		1.5 x lr			25	50	100	200	400		
				6 x lr	0.5		1	2	4	8	16		
			at	7.2 x lr			0.7	1.4	2.8	5.5	11		
		Thermal memory		7.2 x lr	0.35 20 mir		-	1.4	2.8				
		S Short-time pro	tection with adjus	7.2 x lr	0.35 20 mir t ime d	elay	0.7 fore and	1.4 d after tr	2.8 ipping	5.5	11		
		S Short-time pro Pick-up (A)	tection with adjus Isd = Ir x keypad	7.2 x lr	0.35 20 mir t ime d	elay	0.7 fore and	1.4 d after tr	2.8	5.5	11	to 10 x I	r
		S Short-time pro Pick-up (A) accuracy ±10 %	tection with adjus Isd = Ir x keypad settings	7.2 x lr	0.35 20 mir t ime d Adjust	elay tment in	0.7 fore and steps o	1.4 d after tr f 0.5 x Ir	2.8 ipping over the	5.5 range	11	to 10 x I	r
		S Short-time pro Pick-up (A)	tection with adjus Isd = Ir x keypad settings tsd	7.2 x lr	0.35 20 mir t ime d Adjust I ² Of	elay tment in 0	0.7 fore and steps o 0.1	1.4 d after tr f 0.5 x Ir 0.2	2.8 ipping over the 0.3	5.5 range 0.4	11	to 10 x I	r
		S Short-time pro Pick-up (A) accuracy ±10 %	tection with adjus Isd = Ir x keypad settings tsd Keypad	7.2 x lr table 1	0.35 20 mir t ime d Adjust	elay tment in 0 -	0.7 fore and steps o 0.1 0.1	1.4 d after tr f 0.5 x Ir 0.2 0.2	2.8 ipping over the 0.3 0.3	5.5 range 0.4 0.4	11	to 10 x I	r
		S Short-time pro Pick-up (A) accuracy ±10 %	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r	7.2 x lr table 1 ns)	0.35 20 mir t ime d Adjust I ² Of	elay tment in 0 - 20	0.7 fore and steps o 0.1 0.1 80	1.4 d after tr f 0.5 x Ir 0.2 0.2 140	2.8 ipping over the 0.3 0.3 230	5.5 range 0.4 0.4 350	11	to 10 x I	r
		S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms)	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim	7.2 x lr table 1 ns)	0.35 20 mir t ime d Adjust I ² Of	elay tment in 0 -	0.7 fore and steps o 0.1 0.1	1.4 d after tr f 0.5 x Ir 0.2 0.2	2.8 ipping over the 0.3 0.3	5.5 range 0.4 0.4	11	to 10 x I	r
		S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms)	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection	7.2 x lr table 1 ns)	0.35 20 mir t ime d Adjust I²Of I²On	elay tment in 0 - 20 80	0.7 efore and steps o 0.1 0.1 80 140	1.4 d after tr f 0.5 x lr 0.2 0.2 140 200	2.8 ipping over the 0.3 0.3 230 320	5.5 range 0.4 0.4 350 500	11 1.5 x lr		r
		S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms)	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection Ii = In x	7.2 x lr table 1 ns)	0.35 20 mir time d Adjust I ² Of I ² On	elay tment in 0 - 20 80 tment in	0.7 efore and steps o 0.1 0.1 80 140 steps o	1.4 d after tr f 0.5 x lr 0.2 140 200 f 0.5 x lr	2.8 ipping over the 0.3 0.3 230 320	5.5 range 0.4 0.4 350 500	11 1.5 x lr 1.5 x lr	n to:	r
		S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms)	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection Ii = In x Keypad settings	7.2 x lr table 1 ns)	0.35 20 mir time d Adjust I ² Of I ² On	elay tment in 0 - 20 80 tment in 1 (40 to	0.7 efore and steps o 0.1 0.1 80 140 steps o	1.4 d after tr f 0.5 x lr 0.2 140 200 f 0.5 x lr	2.8 ipping over the 0.3 0.3 230 320	5.5 range 0.4 0.4 350 500	11 1.5 x lr 1.5 x lr	n to:	r
		 S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms) Instantaneous Pick-up (A) accuracy ±15 % 	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection Ii = In x Keypad settings Non-tripping time Maximum break tim	7.2 x lr table 1 ns) ne	0.35 20 min time d Adjust l ² Of l ² On Adjust 15 x lr 10 ms 50 ms	elay tment in - 20 80 tment in (40 to	0.7 efore and steps o 0.1 0.1 80 140 steps o	1.4 d after tr f 0.5 x lr 0.2 140 200 f 0.5 x lr	2.8 ipping over the 0.3 0.3 230 320	5.5 range 0.4 0.4 350 500	11 1.5 x lr 1.5 x lr	n to:	r
₂ t		 S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms) I Instantaneous Pick-up (A) accuracy ±15 % R Earth leakage 	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection Ii = In x Keypad settings Non-tripping time Maximum break tim protection / Earth	7.2 x lr Itable 1 ns) ne le Ieakaç	0.35 20 min time d Adjust l ² Of l ² On Adjust 15 x lr 10 ms 50 ms ge alar	elay tment in - 20 80 tment in (40 to	0.7 efore and steps o 0.1 0.1 80 140 steps o	1.4 d after tr f 0.5 x lr 0.2 140 200 f 0.5 x lr	2.8 ipping over the 0.3 0.3 230 320	5.5 range 0.4 0.4 350 500	11 1.5 x lr 1.5 x lr	n to:	r
t A		 S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms) Instantaneous Pick-up (A) accuracy ±15 % 	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection Ii = In x Keypad settings Non-tripping time Maximum break tim protection / Earth Type A, adjustable	7.2 x lr Itable 1 ns) ne le Ieakaç (9 posit	0.35 20 min time d Adjust I ² Of I ² On Adjust 15 x Ir 10 ms 50 ms ge alar ions)	elay tment in - 20 80 tment in n (40 to	0.7 fore and steps o 0.1 0.1 80 140 steps o 160A), 1	1.4 d after tr 0.5 x lr 0.2 0.2 140 200 f 0.5 x lr 2 x ln (2	2.8 ipping over the 0.3 0.3 230 320 over the 250 to 400	5.5 range 0.4 0.4 350 500 e range DA), or	11 1.5 x lr 1.5 x lr 12 x ln	n to: (570A)	
t A		 S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms) I Instantaneous Pick-up (A) accuracy ±15 % R Earth leakage 	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection Ii = In x Keypad settings Non-tripping time Maximum break tim protection / Earth Type A, adjustable In = 40 A	7.2 x lr itable 1 ns) ie leakag (9 posit I∆n =	0.35 20 mir time d Adjust I²Of I²On Adjust 15 x lr 10 ms 50 ms ge alar ions) 0.03	elay tment in - 20 80 tment in n (40 to - -	0.7 fore and steps o 0.1 0.1 80 140 steps o 160A), 1 0.1	1.4 d after tr 0.2 0.2 140 200 f 0.5 x lr 2 x ln (2 0.3	2.8 ipping over the 0.3 0.3 230 320 n over the 50 to 400 0.5	5.5 range 0.4 0.4 350 500 e range DA), or	11 1.5 x lr 1.5 x lr 12 x ln 3	n to: (570A) 5	OFF
t I _{an}		 S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms) I Instantaneous Pick-up (A) accuracy ±15 % R Earth leakage 	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection Ii = In x Keypad settings Non-tripping time Maximum break tim protection / Earth Type A, adjustable In = 40 A In = 100 A	7.2 x lr itable 1 ns) ne leakag (9 posit $I\Delta n =$	0.35 20 mir time d Adjust I ² Of I ² On Adjust 15 x lr 10 ms 50 ms 50 ms 50 ms 50 ms 50 ms 50 ms 50 ms 50 ms	elay tment in 20 80 tment in (40 to 5 m 0.03 0.03	0.7 fore and steps o 0.1 0.1 80 140 steps o 160A), 1 0.1 0.1	1.4 d after tr 0.2 0.2 140 200 f 0.5 x lr 2 x ln (2 0.3 0.3	2.8 ipping over the 0.3 0.3 230 320 n over the 50 to 400 0.5 0.5	5.5 range 0.4 0.4 350 500 e range DA), or	11 1.5 x lr 1.5 x lr 12 x ln 3 3	n to: (570A) 5 5	OFF
		 S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms) I Instantaneous Pick-up (A) accuracy ±15 % R Earth leakage 	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection II = In x Keypad settings Non-tripping time Maximum break tim protection / Earth Type A, adjustable In = 100 A In = 100 A In = 160 A	7.2 x lr itable 1 itable 1 ns) ie leakaç (9 posit I∆n = I∆n = I∆n =	0.35 20 min time d Adjust l ² Of l ² On 15 x lr 10 ms 50 ms ge alar ions) 0.03 0.03	elay tment in 20 80 tment in (40 to 5 m 0.03 0.03 0.03	0.7 offore and steps o 0.1 0.1 80 140 steps o 160A), 1 0.1 0.1 0.1 0.1	1.4 d after tr 0.5 x lr 0.2 140 200 f 0.5 x lr 2 x ln (2 0.3 0.3 0.3	2.8 ipping over the 0.3 230 320 nover the 250 to 400 0.5 0.5 0.5	5.5 range 0.4 0.4 350 500 e range OA), or	11 1.5 x lr 1.5 x lr 12 x ln 3 3 3	1 to: (570A) 5 5 5 5	OFF OFF OFF
	\f.	 S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms) I Instantaneous Pick-up (A) accuracy ±15 % R Earth leakage 	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection Ii = In x Keypad settings Non-tripping time Maximum break tim protection / Earth Type A, adjustable In = 40 A In = 100 A In = 160 A In = 250 A	7.2 x lr itable 1 itable 1 ns) ie leakag (9 posit IΔn = IΔn = IΔn = IΔn =	0.35 20 min time d Adjust l ² Of l ² On 15 x ln 10 ms 50 ms 50 ms 9 alar ions) 0.03 0.03 0.03	elay tment in 20 80 tment in (40 to 5 m 0.03 0.03 0.03 0.03	0.7 offore and steps o 0.1 0.1 80 140 steps o 160A), 1 0.1 0.1 0.1 0.1 0.1	1.4 d after tr 0.5 x lr 0.2 140 200 f 0.5 x lr 2 x ln (2 0.3 0.3 0.3 0.3 0.3	2.8 ipping over the 0.3 230 320 0 over the 250 to 400 0.5 0.5 0.5 0.5 0.5	5.5 range 0.4 0.4 350 500 e range DA), or 1 1 1 1	11 1.5 x lr 1.5 x lr 12 x ln 3 3 3 3 3	1 to: (570A) 5 5 5 5 5 5 5	OFF OFF OFF OFF
	<u>∆t</u>	 S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms) I Instantaneous Pick-up (A) accuracy ±15 % R Earth leakage 	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection II = In x Keypad settings Non-tripping time Maximum break tim protection / Earth Type A, adjustable In = 40 A In = 160 A In = 250 A In = 400 A	7.2 x lr itable 1 itable 1 ns) ne leakag (9 posit IΔn = IΔn = IΔn = IΔn = IΔn =	0.35 20 min time d Adjust l ² Of l ² On 15 x ln 10 ms 50 ms ge alar ions) 0.03 0.03 0.03 0.03 0.03	elay tment in 20 80 tment in (40 to 5 m 0.03 0.03 0.03 0.03 0.03 0.03	0.7 offore and steps o 0.1 0.1 80 140 steps o 160A), 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	1.4 d after tr 0.5 x lr 0.2 140 200 f 0.5 x lr 2 x ln (2 0.3 0.3 0.3 0.3 0.3 1	2.8 ipping over the 0.3 230 320 over the 250 to 400 0.5 0.5 0.5 0.5 3	5.5 range 0.4 0.4 350 500 range DA), or 1 1 1 1 5	11 1.5 x lr 1.5 x lr 12 x ln 3 3 3 10	n to: (570A) 5 5 5 5 5 5 10	OFF OFF OFF OFF
station to the second s	<u>at</u>	 S Short-time pro Pick-up (A) accuracy ±10 % Time delay (ms) I Instantaneous Pick-up (A) accuracy ±15 % R Earth leakage 	tection with adjus Isd = Ir x keypad settings tsd Keypad Non-tripping time (r Maximum break tim protection Ii = In x Keypad settings Non-tripping time Maximum break tim protection / Earth Type A, adjustable In = 40 A In = 100 A In = 160 A In = 250 A	7.2 x lr itable 1 itable 1 itable	0.35 20 min time d Adjust l ² Of l ² On 15 x ln 10 ms 50 ms ge alar ions) 0.03 0.03 0.03 0.03 0.03	elay tment in 20 80 tment in (40 to 5 m 0.03 0.03 0.03 0.03	0.7 offore and steps o 0.1 0.1 80 140 steps o 160A), 1 0.1 0.1 0.1 0.1 0.1	1.4 d after tr 0.5 x lr 0.2 140 200 f 0.5 x lr 2 x ln (2 0.3 0.3 0.3 0.3 0.3	2.8 ipping over the 0.3 230 320 0 over the 250 to 400 0.5 0.5 0.5 0.5 0.5	5.5 range 0.4 0.4 350 500 e range DA), or 1 1 1 1	11 1.5 x lr 1.5 x lr 12 x ln 3 3 3 3 3	1 to: (570A) 5 5 5 5 5 5 5	OFF OFF OFF OFF

[1] For the use in high temperature environment, take into account the thermal limitation of the breaker. [2] For the rating 40A, the N/2 adjustment is not possible [3] The time delay (Δt) is mandatory and designed " Δt = 0" when the I Δ n dial is set on 30mA (0.03). The time delay has no effect when the dial I Δ n is set to the "OFF" position.

Select your circuit breakers and switch-disconnectors Characteristics and performance ComPact NSX circuit breakers from 100 to 250 A up to 690 V

^{com} Select your circuit breakers and switch-disconnectors Characteristics and performance ComPact NSX circuit breakers from 100 to 250 A up to 690 V

A

ComPact NSX single-pole.

ComPact NSX two-pole.

ComPact circuit	breakers			NSX100		NSX160		NSX250
Number of poles				1	2	1	2	1
Control	manual	toggle		۲	۲	\odot	\odot	\odot
		direct c	or extended rotary handle	-	-	-	-	-
	electric			-	-	-	-	-
Connections	fixed	front co	onnection	۲	۲		۲	۲
		rear co	nnection	۲	\odot	\odot	\odot	۲
	withdrawable	front co	onnection	-	-	-	-	-
		rear co	nnection	-	-	-	-	-
Electrical characteris	stics as per IEC/	/EN 60947-2						
Rated current (A)	In	40 °C		100	100	160	160	250
Rated insulation voltage				750	750	750	750	750
Rated impulse withstan		mp		8	8	8	8	8
Rated operational volta	ige (V) Ue		60 Hz	277	690	277	690	277
		DC		250	500	250	500	-
Type of circuit breal				F N M	F M S	F N M	F M S	N
JItimate breaking capa	city (kArms) Icu		220/240 V	18 25 40	36 85 100	18 25 40	36 85 100	25
		50/60	380/415 V		18 25 70		18 25 70	-
		Hz	440 V 500/525 V		15 25 65 10 18 35	 	15 25 65 10 18 35	-
			660/690 V		5 8 10		5 8 10	-
		DC	250 V (1P)	36 50 85	36 85 100	36 50 85	36 85 100	
		DC	500 V (2P)		36 85 100		36 85 100	-
ervice breaking capac	city (kA rms) Ics	s % Icu	000 (21)	100 %	100 %	100 %	100 %	100 %
Suitability for isolation				۲				
Jtilisation category				A	A	A	A	A
Durability (C-O cycles)	mechanical			20000	20000	20000	20000	10000
· · · · · · · · · · · · · · · · · · ·	electrical	277 V	In/2	20000	20000	20000	20000	10000
			In	10000	10000	10000	10000	5000
Protection and mea	surements							
ype of trip units				built-in thermal-magnet		built-in thermal-magnetic		built-in thermal-mag
Ratings		In			40 50 63 80 10			160 200 250
Overload protection (the		ng time Ir		fixed		fixed		fixed
Short airquit protoction		reshold		16 20 25 30	40 50 63 80 10			160 200 250
Short-circuit protection		stantaneous Im skup	value indicated for AC ^[1]	fixed 190 190 300 300	500 500 500 640 80	fixed 0 1000 1250		fixed 850 850 850
	pic	кир	real value for DC	260 260 400 400		00 1200 1250		
Add-on earth-leakage p	protection Vid	gi add-on		-	-	-	-	-
		mbination with Vigi	rex relay	-	۲	-	۲	-
Additional indicatio		-					0	
ndication contacts		uxiliaries						
				-		-		-
/oltages releases		K shunt release		-	۲	-	۲	-
	M	N undervoltage rele	ase	-	۲	-	\odot	-
nstallation								
Accessories	ter	minal extensions a	nd spreaders	۲	۲	۲	\odot	٢
		minal shields and i		•	•	0	0	0
		cutcheons				•		
					O × 404 × 00 O			
Dimensions (mm)	VV	x H x D		35 x 161 x 86 0.7	70 x 161 x 86 1.2	35 x 161 x 86 0.7	70 x 161 x 86 1.2	35 x 161 x 86 0.7
Neight (kg)	austom			0.7	1.2	0.1	1.2	0.7
Source changeover				۲	۲	•	•	۲
Manual mechanical inte								

are indicated for AC. The real DC thresholds are indicated on the following line.

A-4 Life Is On Schneider

Life Is On Schneider

A-5

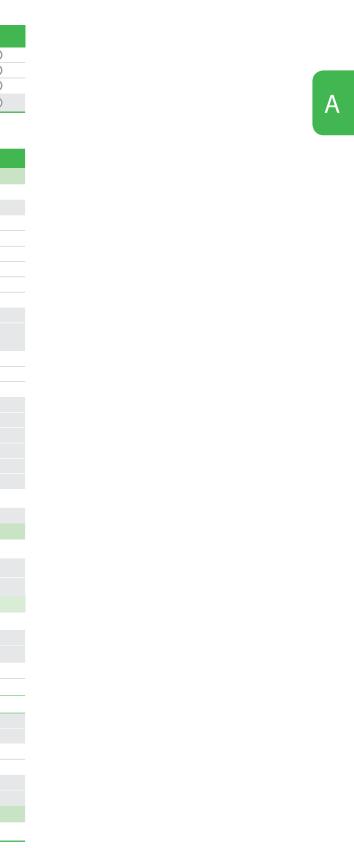
Α

Common characteristics

ComPact NSXm switch-disconnectors from 50 to 160 A NA

Installation standards require upstream protection. However ComPact NSXm 50 to 160 NA switch-disconnectors are self-protected by their high-set magnetic release.

ComPact NSXm switch-disconnectors.


Common characteristi	CS				Common ci	laracteristi	C 3		
Rated voltages Insulation voltage		Ui		800	Control	Manual	With toggle		(
Impulse withsta				8			With direct or extended rotary handle		
Operational vol	tage (V)		AC 50/60 Hz	690			With side rotary	/ handle	(
Suitability for isolation			IEC/EN 60947-3	yes	Versions	Fixed			(
Utilisation category			AC 22 A/AC 23 A						
Pollution degree			IEC 60664-1	3					
Switch-disconnectors					NSXm50NA	NS	Xm100NA	NSXm160NA	
Electrical characteristics a	s per IEC/	EN 60947-	3		- Hoxinoonix	113			
Conventional thermal current (A	-		•		50	100		160	
Number of poles					3, 4	3, 4		3, 4	
Operational current (A)	le	AC 50/60 I	-lz		AC22A / AC23A		2A / AC23A	AC22A/AC23A	
depending on the utilisation			220/240 V		50	100		160 / 100	
category			380/415 V		50	100		160 / 100	
			440/480 V		50	100		160 / 100	
			500/525 V		50	100		160 / 100	
			660/690 V		50	100		160 / 100	
Short-circuit making capacity	lcm	min (swite	h-disconnector al	one)	1.28	2.13		2.13	
(kA peak)			ection by upstrear		150	150		150	
		breaker)	apparear			100			
Rated short-time withstand	lcw	for	1 s		900	150)	1500	
current (A rms)			3 s		900	150)	1500	
			20 s		200	335		335	
Durability (C-O cycles)	mechanica	al			20000	200	00	20000	
	electrical	AC			AC22A / AC23A	AC2	2A / AC23A	AC22A/AC23A	
			440 V	le/2	20000 / 20000	200	00 / 20000	20000 / 20000	
				le	10000 / 10000	100	00 / 10000	10000 / 10000	
			690 V	le/2	10000 / 6000		00 / 6000	10000 / 6000	
				le	5000 / 3000		0/3000	5000 / 3000	
Positive contact indication					۲	۲		۲	
Pollution degree					3	3		3	
Additional indication and o	control aux	xiliaries							
ndication contacts					۲	۲		۲	
Voltage releases	MX shunt t	trip release			•	•		•	
voltage releases									
	win under	oltage relea	se		\odot	۲			
Installation / connections									
Dimensions and weights									
Dimensions (mm)			3P		81 x 137 x 80				
WxHxD			4P		108 x 137 x 80				
Weight (kg)			3P		1.06				
			4P		1.42				
Connections									
Pitch (mm)			Standard		27				
			With spreaders		35				
EverLink lug Cu or Al ^[1] cables	Cross-sec	tion (mm ²)	Rigid		95				
			Flexible		70				
Crimp lugs Cu or Al	Cross-sec	tion (mm ²)	Rigid		120				
		, ,	Flexible		95				
Source-changeover syster	ns								
Manual mechanical interlocking					۲				
1] Al up to 100 A.					9				

www.se.com

www.se.com

Common characteristics

Select your circuit breakers and switch-disconnectors Characteristics and performance

Select your circuit breakers and switch-disconnectors Characteristics and performance ComPact NSX switch-disconnectors from 100 to 630 A NA

Common characteristics

Impulse withstand voltage (kV) Uimp

Operational voltage (V)

Ui

Ue

Rated voltages Insulation voltage (V)

Suitability for isolation

Manual mechanical interlocking

Automatic source-changeover

Utilisation category

Pollution degree

3

Select your circuit breakers and switch-disconnectors Characteristics and performance ComPact NSX switch-disconnectors from 100 to 630 A NA

Installation standards require upstream protection. However ComPact NSX100 to 630 NA switch-disconnectors are selfprotected by their high-set magnetic release.

ComPact NSX100 to 250 NA

ComPact NSX400 to 630 NA

> Discover our specific switch-disconnectors offer: ComPact INS/INV

LVPED213024EN

Switch-disconnectors					NSX100NA	NSX160NA
Electrical characteristics a		EN 60047	2		INSXTOONA	
	Ith 60 °C	EN 00947.	· J		400	400
Conventional thermal current (A) Number of poles					100	160
Operational current (A) depending o	n lo	AC 50/60 H	-		2 ^[1] , 3, 4	2[1], 3, 4
the utilisation category	ii le	AC 50/00 H	220/240 V		AC22A / AC23A 100	AC22A / AC23A
are utilisation category			380/415 V			
			440/480 V		100	160
			500/525 V		100	160
			660/690 V		100	160
		DC	000/090 v		DC22A / DC23A	DC22A / DC23A
		DO	250 V (1 pole)		100	160
			500 V (2 poles in serie	(c)	100	160
			750 V (3 poles in serie		100	160
Short-circuit making capacity	lcm	min (switch	-disconnector alone)		2.6	3.6
(kA peak)	lonn		ction by upstream circuit		330	330
		breaker)				000
Rated short-time withstand current	lcw	for	1 s		1800	2500
Arms)			3 s		1800	2500
			20 s		690	960
Durability (C-O cycles)	mechanical				50000	40000
	electrical	AC			AC22A/AC23A	AC22A/AC23A
			440 V	In/2	35000	30000
				In	20000	15000
			690 V	In/2	15000	10000
				In	8000	5000
		DC	250 V (1 pole) and	In/2	10000	10000
			500 V (2 poles in serie	s)In	5000	5000
Positive contact indication					۲	۲
Pollution degree					3	3
Protection						
Add-on earth-leakage protection	By Vigi add-	on			۲	
	By Vigirex re	elay			۲	
Additional indication and o	control aux	kiliaries				
Indication contacts					۲	
/oltages releases	MX shunt re	lease			۲	
	MN undervo	ltage release			•	
/oltage-presence indicator					0	
Current-transformer module					۲	
Ammeter module					•	
nsulation monitoring module					۲	
Remote communication by	y bus					
Device-status indication					۲	
Device remote operation					۲	
Operation counter					\odot	
nstallation / connections						
Dimensions (mm)	fixed, front c	onnections	2/3P		105 x 161 x 86	
WxHxD			4P		140 x 161 x 86	
Weight (kg)	fixed, front c	onnections	3P		1.5 to 1.8	
0			4P		2.0 to 2.2	
Source-changeover system systems)	ms (see ch	lapter on S	source-cnangeov	er		
Manual machanical interlocking						

www.se.com

800

690

yes

AC 50/60 Hz

IEC 60664-1

AC 22 A/AC 23 A - DC 22 A/DC 23 A

IEC/EN 60947-3

Manual

Electrical

Withdrawable

Fixed

			Chassis
	NSX100NA	NSX160NA	NSX250NA
	100	160	250
	2 ^[1] , 3, 4	2 ^[1] , 3, 4	2 ^[1] , 3, 4
	AC22A/AC23A	AC22A / AC23A	AC22A/AC23A
	100	160	250
	100	160	250
	100	160	250
	100	160	250
	100	160	250
	DC22A / DC23A	DC22A / DC23A	DC22A / DC23A
ble)	100	160	250
bles in series)	100	160	250
bles in series)	100	160	250
r alone)	2.6	3.6	4.9
eam circuit	330	330	330
	1800	2500	3500
	1800	2500	3500
	690	960	1350
	50000	40000	20000
	AC22A / AC23A	AC22A/AC23A	AC22A/AC23A
In/2	35000	30000	15000
In	20000	15000	7500
In/2	15000	10000	6000
In	8000	5000	3000
ble) and In/2	10000	10000	10000
bles in series)In	5000	5000	5000

Common characteristics

www.se.com

Control

Versions

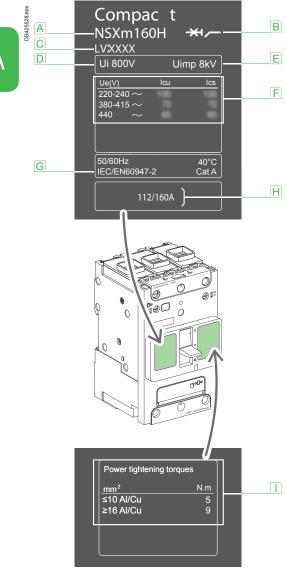
 $oldsymbol{O}$

 \bigcirc

A-12 Life Is On Schneider

With toggle		۲	
With direct or extended ro	tary handle	۲	
With remote control		۲	
		۲	
Plug-in base		۲	
Chassis		\odot	
NSX250NA	NSX400NA	NSX630NA	

NSA400NA	NUCOVCN
400	630
3, 4	3, 4
AC22A/AC23A	AC22A/AC23A
400	630
400	630
400	630
400	630
400	630
-	-
-	-
-	-
-	-
7.1	8.5
330	330
5000	6000
5000	6000
1930	2320
15000	15000
AC22A / AC23A	AC22A/AC23A
10000	6000
5000	3000
5000	3000
2500	1500
-	-
-	-
\odot	\odot
3	3


 \odot \odot $oldsymbol{\circ}$ \odot \odot \odot \odot $oldsymbol{O}$ \odot $oldsymbol{\circ}$ \odot \odot 140 x 255 x 110 185 x 255 x 110 5.2 6.8 \odot

Α

 \odot

Select your circuit breakers and switch-disconnectors General characteristics of the ComPact range

www.se.com

Standardised characteristics indicated on the rating plate

class

- Commercial reference.
- D Ui: rated insulation voltage
- E Uimp: rated impulse withstand voltage.
- F Ue: operational voltage
- G Reference standard.
- H Circuit breaker rating.
- **I** Power connections tightening torques.

Note: when the circuit breaker is equipped with an extended rotary handle, the door must be opened to access the rating plate

Compliance with standards

ComPact NSX and NSXm circuit breakers and switch-disconnectors comply with the following:

- b international standards:
- v IEC 60947-1: general rules
- v IEC 60947-2: circuit breakers
- v IEC 60947-3: switch-disconnectors
- v IEC 60947-4-1: contactors and motor starters ^[1]
- v IEC 60947-5-1 and following: control circuit devices and switching elements; automatic control components
- b European standards (EN 60947-1, EN 60947-2, EN 60947-3 and EN 60947-5-1): v China CCC
- v EAC (Customs Union)

b the specifications of the marine classification companies (Veritas, Lloyd's Register of Shipping, Det Norske Veritas, etc.), recommendations issued by the CNOMO organisation for the protection of machine tools.

Pollution degree

ComPact NSX and NSXm circuit breakers and switch-disconnectors are certified for operation in pollution degree 3 environments as defined by IEC standards 60947-1 and 60664-1 (industrial environments).

Climatic withstand

ComPact NSX and NSXm circuit breakers have successfully passed the tests defined by the following standards for extreme atmospheric conditions. Dry cold and dry heat:

- b IEC 60068-2-1: dry cold at -55 °C
- b IEC 60068-2-2: dry heat at +85 °C.
- Damp heat (tropicalization)

b IEC 60068-2-30: damp heat (temperature + 55 °C and relative humidity of 95 %). b IEC 60068-2-52: severity 2 - Cycling salt mist.

Environment

ComPact NSX and NSXm respects the European environment directive EC/2002/95 concerning the restriction of hazardous substances (RoHS) and is Green Premium. Product environment profiles (PEP) have been prepared, describing the environmental impact of every product throughout its life cycle, from production to the end of its service life.

All ComPact production sites have set up an environmental management system certified ISO 14001.

Each factory monitors the impact of its production processes. Every effort is made to prevent pollution and to reduce consumption of natural resources.

Ambient temperature

b ComPact NSX and NSXm circuit breakers may be used between -25 °C and +70 °C. For temperatures higher than 40 °C, (For ComPact NSX: +65 °C for circuit breakers used to protect motor feeders) devices must be derated (pages E-8 to E-9 and E-14 to E-17).

b Circuit breakers should be put into service under normal ambient, operatingtemperature conditions. Exceptionally, the circuit breaker may be put into service when the ambient temperature is between -35 °C and -25 °C.

b The permissible storage temperature range for ComPact NSX and NSXm circuit breakers in the original packing is -50 °C [2] [3] and +85 °C.

[1] For ComPact NSX

[2] For ComPact NSXm: - 40 °C for ComPact NSXm MicroLogic Vigi 4.1. [3] For ComPact NSX: -40 °C for MicroLogic control units with an LCD screen and MicroLogic Vigi 4.

Electromagnetic compatibility

- ComPact NSX and NSXm devices are protected against
- b overvoltages caused by circuit switching (e.g. lighting circuits)
- b overvoltages caused by atmospheric disturbances
- b devices emitting radio waves such as mobile telephones, radios, walkie-talkies, radar, etc.
- b electrostatic discharges produced by users.
- Immunity levels for ComPact NSXm comply with the standards below.
- b IEC/EN 60947-2: Low-voltage switchgear and controlgear, part 2: Circuit breakers
- v Annex F: Immunity tests for circuit breakers with electronic protection
- v Annex B: Immunity tests for residual current protection
- b IEC/EN 61000-4-2: Electrostatic-discharge immunity tests
- b IEC/EN 61000-4-3: Radiated, radio-frequency, electromagnetic-field immunity tests
- b IEC/EN 61000-4-4: Electrical fast transient/burst immunity tests
- b IEC/EN 61000-4-5: Surge immunity tests
- b IEC/EN 61000-4-6: Immunity tests for conducted disturbances induced by
- radio-frequency fields
- b IEC/EN 61000-4-8: Power frequency magnetic field immunity test b IEC/EN 61000-4-11: Voltage dips, short interruptions and voltage variations
- immunity tests

b CISPR 11: Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement.

Suitable for isolation with positive contact

indication

All ComPact NSX and NSXm devices are suitable for isolation as defined in IEC standard 60947-2:

- b The isolation position corresponds to the O (OFF) position.
- b The operating handle cannot indicate the OFF position unless the contacts are effectively open.
- b Padlocks may not be installed unless the contacts are open

Installation of a rotary handle or a motor mechanism does not alter the reliability of the position-indication system.

- The isolation function is certified by tests guaranteeing:
- b the mechanical reliability of the position-indication system
- b the absence of leakage currents

b overvoltage withstand capacity between upstream and downstream connections. The tripped position does not insure isolation with positive contact indication. Only the OFF position guarantees isolation.

Installation in class II switchboards

All ComPact NSX and NSXm devices are class II front face devices. They may be installed through the door of class II switchboards (as per IEC standards 61140 and 60664-1) without downgrading switchboard insulation. Installation requires no special operations, even when the circuit breaker is equipped with a rotary handle or a motor mechanism.

Degree of protection

The following indications are in accordance with standards IEC 60529 (IP degree of protection) and IEC 62262 (IK protection against external mechanical impacts). Bare circuit breaker with terminal shields

- b With toggle: IP40, IK07.
- b With direct rotary handle: IP40 IK07.

Circuit breaker installed in a switchboard

ComPact NSXm

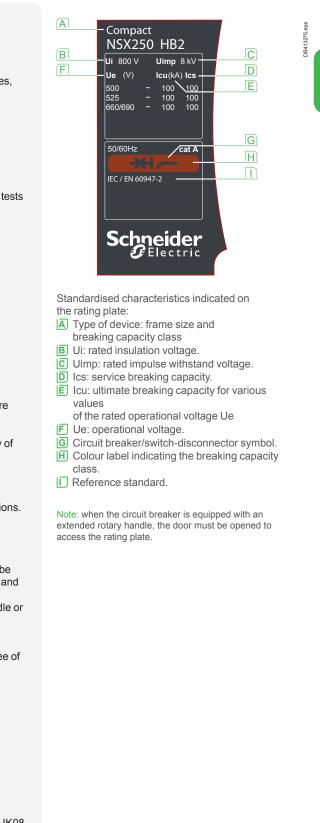
IK08.

- b With toggle: IP40, IK07. b With toggle: IP40, IK07.
- b With direct rotary handle: IP40, IK07. b With direct rotary handle:
- b With extended rotary handle: IP54 or v standard / VDE: IP40. IK07 IP65 IK08
 - v MCC: IP43 IK07

ComPact NSX

- b With side rotary handle: IP54 or IP65 V CNOMO: IP54 IK08
 - b With extended rotary handle: IP55 IK08 b With motor mechanism: IP40 IK07.

For more detail about IP, see page E-7.

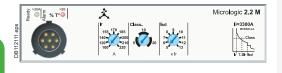


A Type of device: frame size and breaking capacity

B Circuit breaker/switch-disconnector symbol.

Select your circuit breakers and switch-disconnectors General characteristics of the ComPact range

Α


Select your protection **ComPact NSX motor protection** MicroLogic 2.2 / 2.3 M electronic trip units

MicroLogic 2.2 / 2.3 M trip units provide built-in thermal and magnetic protection. They are used in 2 devices motorfeeder solutions on ComPact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L. They provide protection for motors up to 315 kW at 400 V against:

short-circuits

■ overloads with selection of a trip class (5, 10 or 20)

phase unbalance.

Circuit breakers with a MicroLogic 2.2 / 2.3 M trip unit include protection similar to an inverse-time thermal relay. They are combined with a contactor.

Protection

Settings are made using a dial.

Overloads (or thermal protection): Long-time protection and trip class (Ir) Inverse-time thermal protection against overloads with adjustable pick-up Ir. Settings are made in amperes. The tripping curve for the long-time protection, which

indicates the time delay tr before tripping, is defined by the selected trip class.

Trip class (class)

The class is selected as a function of the normal motor starting time.

- Class 5: starting time less than 5 s.
- Class 10: starting time less than 10 s.
- Class 20: starting time less than 20 s.

For a given class, it is necessary to check that all motor-feeder components are sized to carry the 7.2 Ir starting current without excessive temperature rise during the time corresponding to the class.

Short-circuits: Short-time protection (Isd)

Protection with an adjustable pick-up Isd. There is a very short delay to let through motor starting currents.

Short-circuits: Non-adjustable instantaneous protection (li) Instantaneous protection with non-adjustable pick-up li.

Phase unbalance or phase loss (lunbal) (🗶)

This function opens the circuit breaker if a phase unbalance occurs:

- that is greater than the 30 % fixed pick-up lunbal
- following the non-adjustable time delay tunbal equal to:
- □ 0.7 s during starting
- □ 4 s during normal operation.

Phase loss is an extreme case of phase unbalance and leads to tripping under the same conditions

Indications

Front indications

Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault

Red alarm LED for motor operation: goes ON when the thermal image of the rotor and stator is greater than 95 % of the permissible temperature rise.

Remote indications via SDTAM module

ComPact NSX devices with a MicroLogic 2 can be equipped with an SDTAM module dedicated to motor applications for:

a contact to indicate circuit-breaker overload

a contact to open the contactor. In the event of a phase unbalance or overload, this output is activated 400 ms before circuit-breaker tripping to open the contactor and avoid circuit breaker tripping.

This module takes the place of the MN/MX coils and an OF contact.

SDTAM remote indication relay module with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

ComPact NSX motor protection MicroLogic 6 E-M electronic trip units

Display of type of fault

On a fault trip, the type of fault (Ir, Isd, Ii, Ig, Iunbal, Ijam), the phase concerned and the interrupted current are displayed.

Indications

Front indications

Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

Red alarm LED for motor operation: goes ON when the thermal image of the rotor or stator is greater than 95% of the permissible temperature rise.

Remote indications via SDTAM or SDx module See description on page C-31 for SDTAM and for SDx.

MicroLogic 6.2/6.3 E-M

		Ratings (A)	In at 65	° C [1]		25	50	80	150	220	320	500		
<u>s</u> t		Circuit breaker	ComPact N	ISX100		igodoldoldoldoldoldoldoldoldoldoldoldoldol			-	-	-	-		
20407404.ebs			ComPact N	ISX160				0		-	-	-		
1-00	Tr"		ComPact N	ISX250		0	0	0	0		-	-		
	Class					U	U		ullet					
	I. Isd		ComPact N			-	-	-	-	-	۲	-		
	dg tsd		ComPact N	ISX630		-	-	-	-	-	۲	۲		
	litg └──li	L Overloads: Lo	ong-time	protectio	n									
	→	Pick-up (A)	Ir	Dial setting	I	Value d	epending	g on trip-u	nit rating	(In) and	setting o	n dial		
		Tripping between		ln = 25 A	lr =	12	14	16	18	20	22	23	24	25
		1.05 and 1.20 Ir		In = 50 A	lr =	25	30	32	36	40	42	45	47	50
				In = 80 A	lr =	35	42	47	52	57	60	65	72	80
				In = 150 A	Ir =	70	80	90	100	110	120	130	140	150
				In = 220 A	Ir =	100	120	140	155	170	185	200	210	220
				In = 320 A	lr =	160	180	200	220	240	260	280	300	320
				In = 500 A	lr =	250	280	320	350	380	400	440	470	500
				Keypad se	tting	Fine ad	justment	s in 1 A s	eps belov	w maxim	um value	defined	by dial s	etting
		Trip class as per IEC 6	0947-4-1		Ū	5	10	20	. 30					Ū
		Time delay (s)	tr		1.5 x lr	120	240	480	720	for war	m motor			
		depending on selected	trip class		6 x Ir	6.5	13.5	26	38	for cold	motor			
					7.2 x lr	5	10	20	30	for cold	motor			
		Thermal memory				20 minu	utes befor	re and af	er trippin	g				
		Cooling fan				Settings	s for self-	cooled or	fan-coole	ed motor	s			
		Cooling fan Settings for self-cooled or fan-cooled motors S, Short-circuits: Short-time protection with fixed time delay												
		Pick-up (A)			5	6	7	8	9	10	11	12	13	
		accuracy ±15 %				Fine ad	justment	In 0.5 x I	r steps us	sing the k	keypad			
		Time delay	tsd	non-adj	ustable			-						
			Non-trippin	g time		10 ms								
			Maximum I	oreak time		60 ms								
		Short-circuits	: Non-ad	justable	instant	aneou	s prote	ction						
		Pick-up (A)	li non-adju	stable		425	750	1200	2250	3300	4800	6500		
		accuracy ±15 %	Non-trippin Maximum I			0 ms 30 ms								
		G Ground faults	;											
		Pick-up (A)	lg = ln x			Dial set	ting							
		accuracy ±10 %		ln = 25 A	lg =	0.6	0.6	0.6	0.6	0.7	0.8	0.9	1	Off
				In = 50 A	lg =	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	Off
				ln > 50 A	lg =	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1	Off
						fine adj	ustments	in 0.05 x	In steps					
		Time delay (ms)	tg			0	0.1	0.2	0.3	0.4				
			Non-trippin	g time		20	80	140	230	350				
			Maximum I	oreak time		80	140	200	320	500				

[2] The unbalance measurement takes into account the most unbalanced phase with respect to the average current.

B-35

Select your protection ComPact NSX motor protection

Additional technical characteristics

Phase unbalance

An unbalance in three-phase systems occurs when the three voltages are not equal in amplitude and/or not displaced 120° with respect to each other. It is generally due to single-phase loads that are incorrectly distributed throughout the system and unbalance the voltages between the phases.

These unbalances create negative current components that cause braking torques and temperature rise in asynchronous machines, thus leading to premature ageing.

Phase loss

Phase loss is a special case of phase unbalance.

During normal operation, it produces the effects mentioned above and tripping must occur after four seconds.

During starting, the absence of a phase may cause motor reversing, i.e. it is the load that determines the direction of rotation. This requires virtually immediate tripping (0.7 seconds).

Starting time in compliance with the class (MicroLogic 2 M) For normal motor starting, MicroLogic 2 M checks the conditions

For normal motor starting, MicroLogic 2 M checks the conditions below with respect to the thermal-protection (long-time) pick-up Ir:

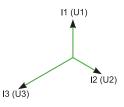
■ current > 10 % x Ir (motor-off limit)

• overrun of 1.5 x Ir threshold, then return below this threshold before the end of a 10 s time delay.

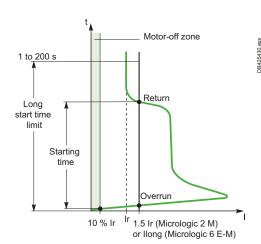
If either of these conditions is not met, the thermal protection trips the device after a maximum time equal to that of the selected class.

Pick-up Ir must have been set to the current indicated on the motor rating plate.

Long starts (MicroLogic 6 E-M)

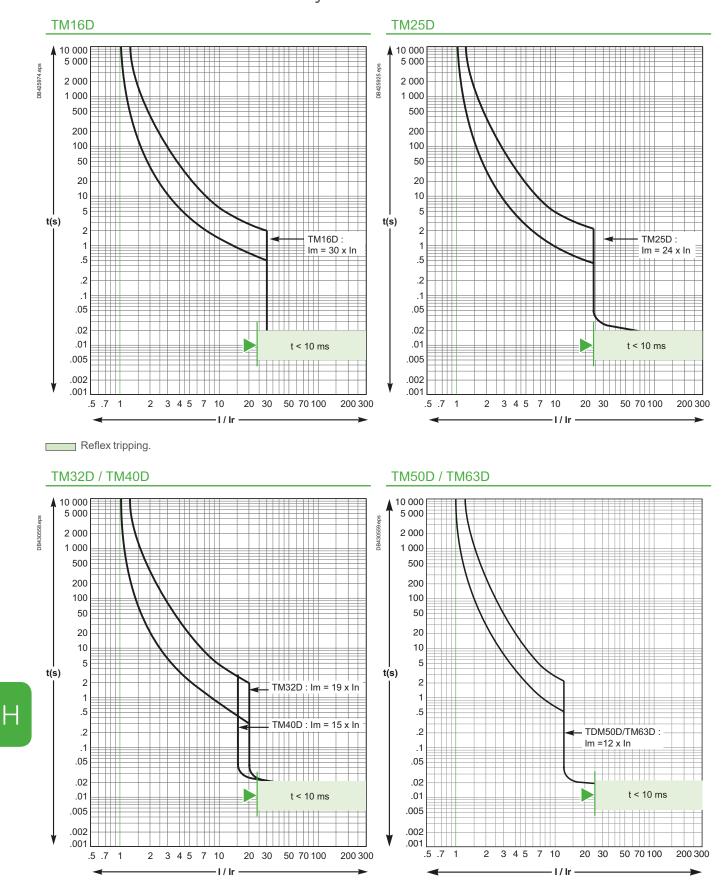

When this function is not activated, the starting conditions are those indicated above. When it is activated, this protection supplements thermal protection (class).

- A long start causes tripping and is characterised by:
- current > 10 % x Ir (motor-off limit) with:


■ either overrun of the long-time pick-up (1 to 8 x lr) without return below the pick-up before the end of the long-time time delay (1 to 200 s)

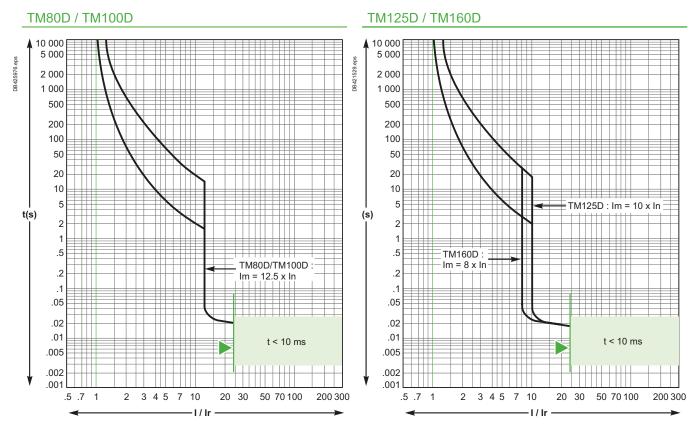
or no overrun of the long-time pick-up (1 to 8 x lr) before the end of the long-time time delay (1 to 200 s).

Pick-up Ir must have been set to the current indicated on the motor rating plate. This protection should be coordinated with the selected class.


Unbalance of phase currents and voltages.

Motor starting and long starts.

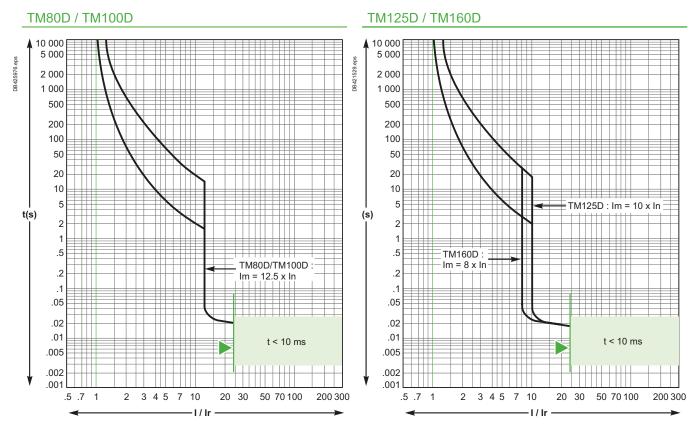
В


Additional characteristics **ComPact NSXm up to 160 A** TMD magnetic trip units, tripping curves Protection of distribution systems

Reflex tripping.

Additional characteristics

ComPact NSXm up to 160 A TMD magnetic trip units, tripping curves Protection of distribution systems

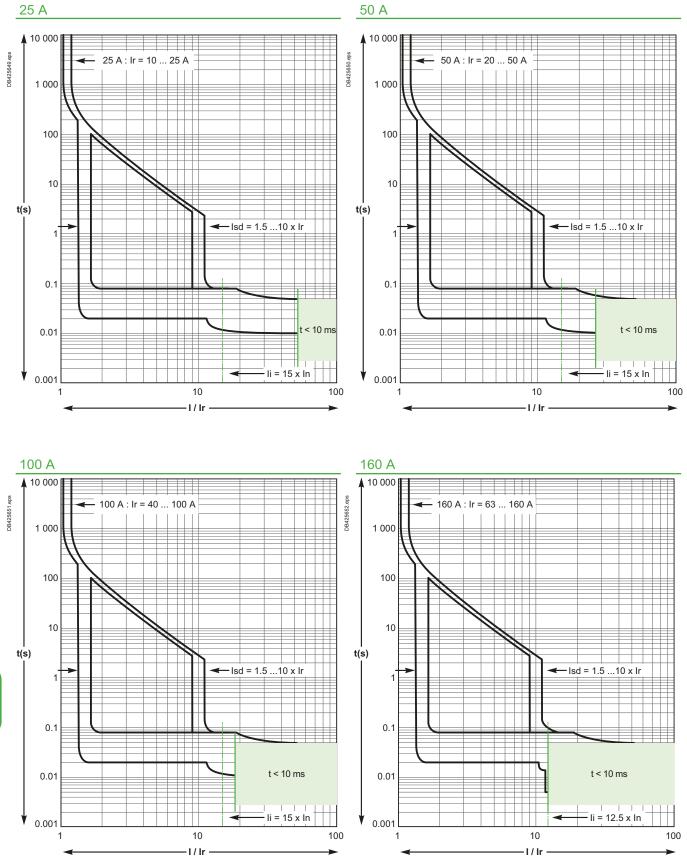

Reflex tripping.

For all TMD curves :

Values are given for 40 °C ambiant, Ir = 1xln, 3 poles loaded, cold start. For Ir = k x In, read the time corresponding to 1/k times given current. For 1 pole tripping, read the time corresponding to 0.85 times given current. For hot start (0.9 x Ir), divide max. time by 2, min. time by 4.

Additional characteristics

ComPact NSXm up to 160 A TMD magnetic trip units, tripping curves Protection of distribution systems

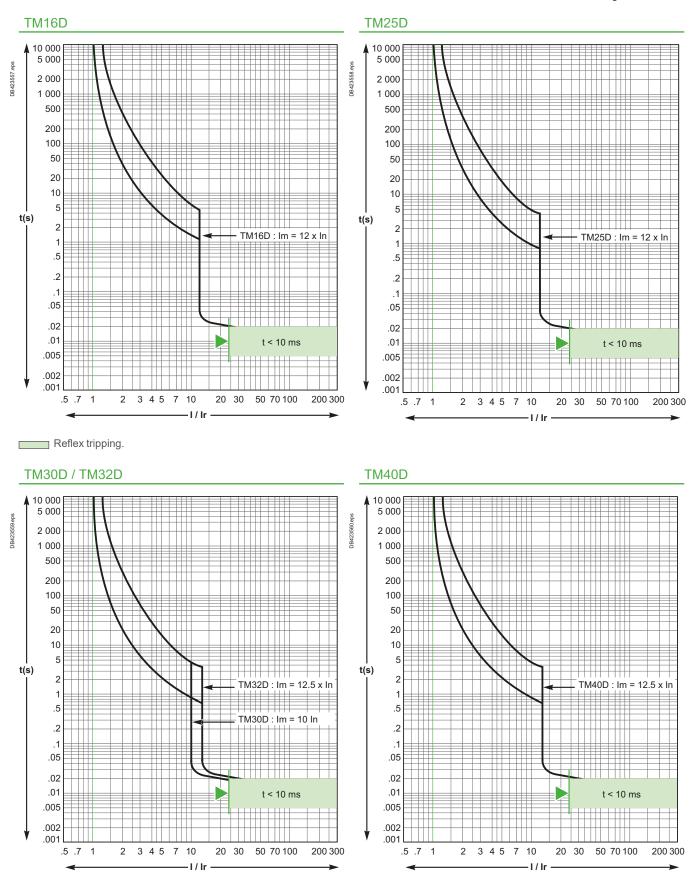


Reflex tripping.

For all TMD curves :

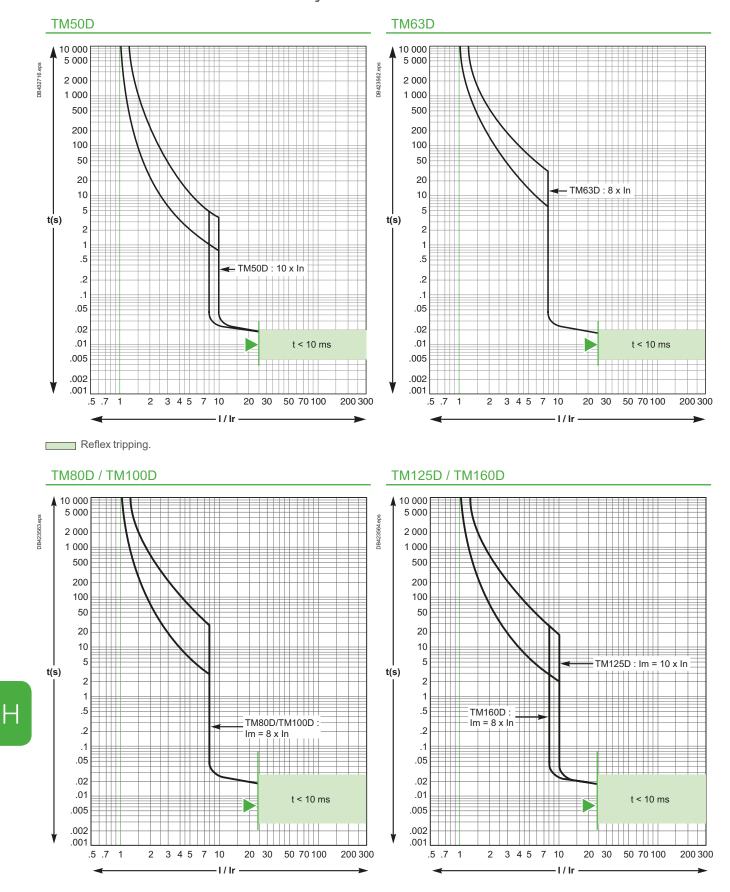
Values are given for 40 °C ambiant, Ir = 1xln, 3 poles loaded, cold start. For Ir = k x In, read the time corresponding to 1/k times given current. For 1 pole tripping, read the time corresponding to 0.85 times given current. For hot start (0.9 x Ir), divide max. time by 2, min. time by 4.

Additional characteristics **ComPact NSXm up to 160 A** MicroLogic Vigi 4.1, tripping curves Protection of distribution systems



Reflex tripping.

Η


Additional characteristics

ComPact NSX100 to 250 TMD magnetic trip units, tripping curves Protection of distribution systems

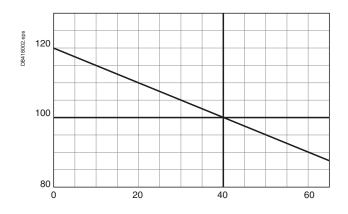
Reflex tripping.

Additional characteristics **ComPact NSX100 to 250** TMD magnetic trip units, tripping curves Protection of distribution systems

Reflex tripping.

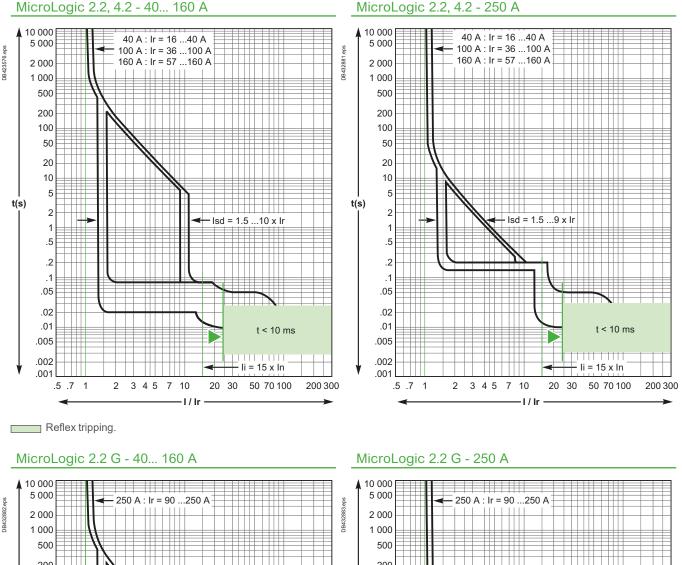
Г

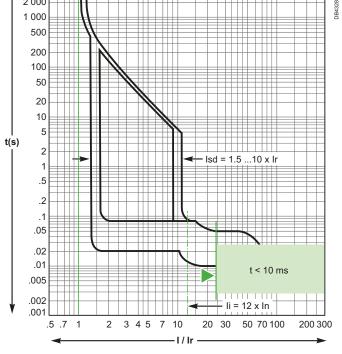
ComPact NSX100 to 250

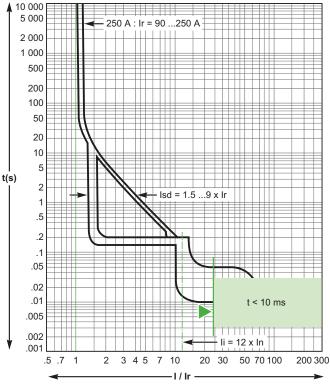

TMD magnetic trip units, tripping curves Protection of distribution systems

TM200D / TM250D 10 000 5 000 DB 423565.eps 2 000 1 000 500 200 100 50 20 10 5 t(s) 2 TM200D/TM250D 1 lm = 5 ... 10 x ln .5 .2 1 .05 .02 .01 t < 10 ms .005 .002 .001 .5 .7 1 2 3 4 5 7 10 20 30 50 70 100 200 300 ·I / Ir

Reflex tripping.

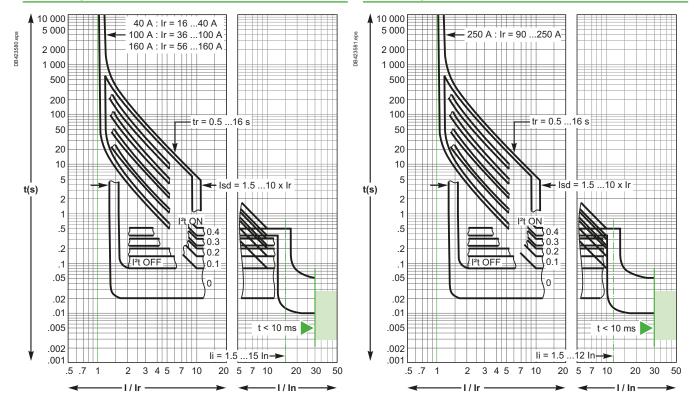

For all TDM curves :


Values are given for 40 °C ambiant, Ir = 1xIn, 3 poles loaded, cold start. For Ir = k x In, read the time corresponding to 1/k times given current. For 1 pole tripping, read the time corresponding to 0.85 times given current. For hot start (0.9 x Ir), divide max. time by 2, min. time by 4.

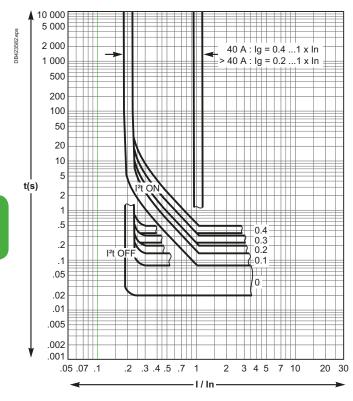


ComPact NSX100 to 250

MicroLogic 2.2, 4.2 and 2.2 G electronic trip units, tripping curves Protection of distribution systems



Reflex tripping.

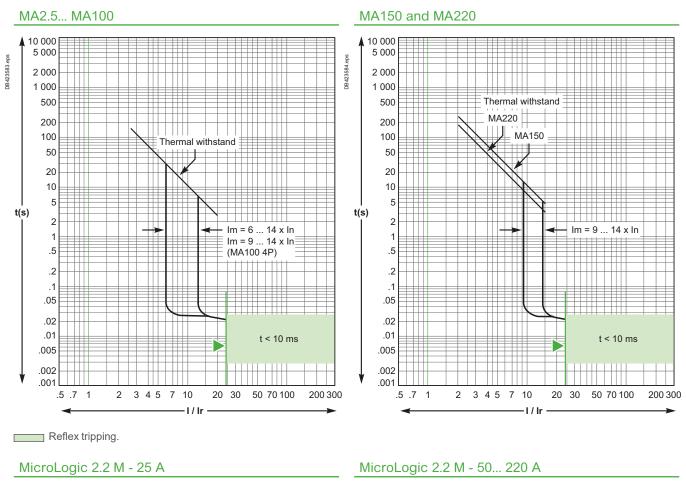

Additional characteristics **ComPact NSX100 to 250** MicroLogic 5.2 and 6.2 A or E and 7.2 E electronic trip units, tripping curves - Protection of distribution systems

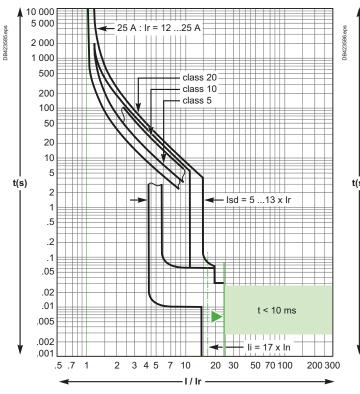
MicroLogic 5.2 and 6.2 A or E and 7.2 E - 40... 160 A

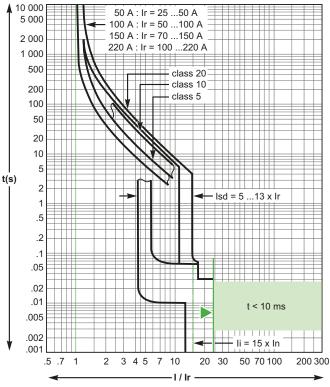
MicroLogic 5.2 and 6.2 A or E and 7.2 E - 250 A

Reflex tripping.

MicroLogic 6.2 A or E (ground-fault protection)

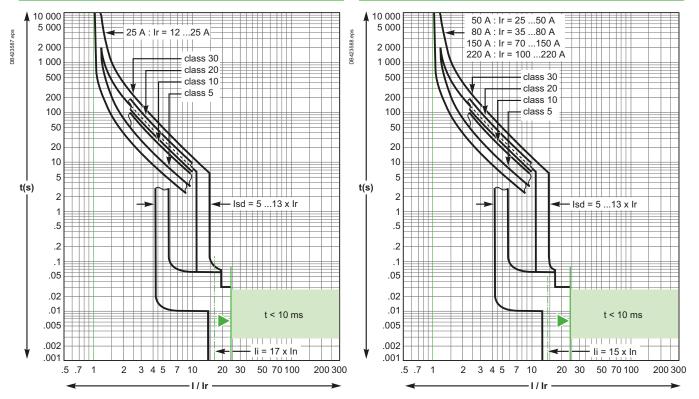

Reflex tripping.


Н

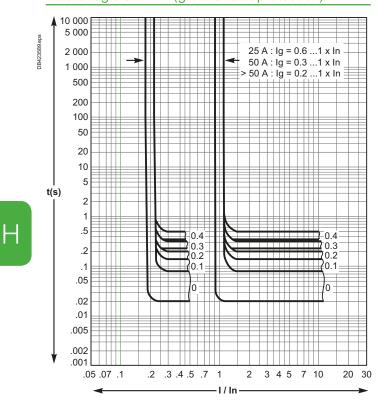

www.se.com

ComPact NSX100 to 250

MA magnetic trip units, MicroLogic 2.2 M electronic trip units, tripping curves - Motor protection

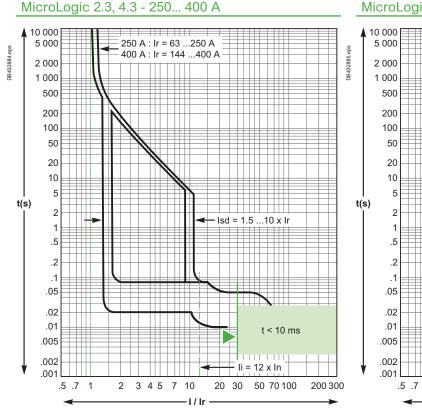


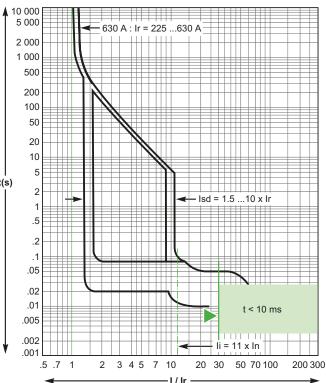
Reflex tripping.


Additional characteristics **ComPact NSX100 to 250** MicroLogic 6.2 E-M electronic trip units, tripping curves Motor protection

MicroLogic 6.2 E-M - 25 A

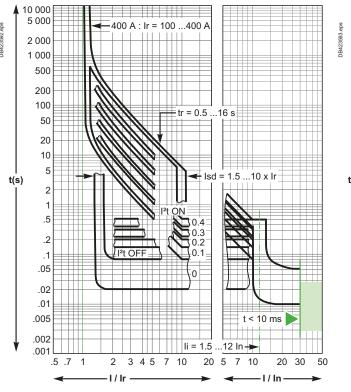
MicroLogic 6.2 E-M - 50... 220 A


Reflex tripping.

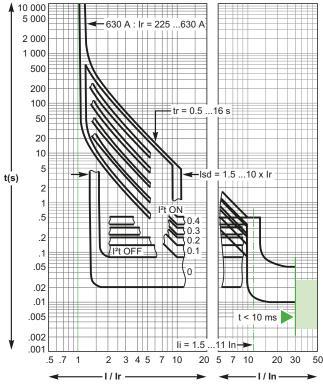

MicroLogic 6.2 E-M (ground-fault protection)

ComPact NSX400 to 630

MicroLogic 2.3, 4.3, 5.3 and 6.3 A or E and 7.3 E electronic trip units, tripping curves - Protection of distribution systems



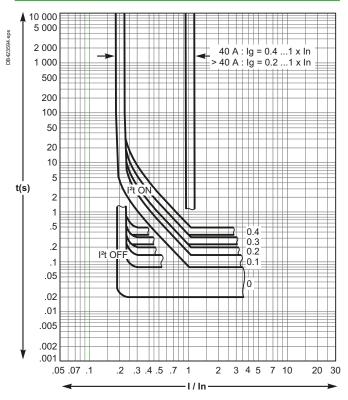
MicroLogic 2.3, 4.3 - 630 A



Reflex tripping.

MicroLogic 5.3 and 6.3 A or E and 7.3 E - 400 A

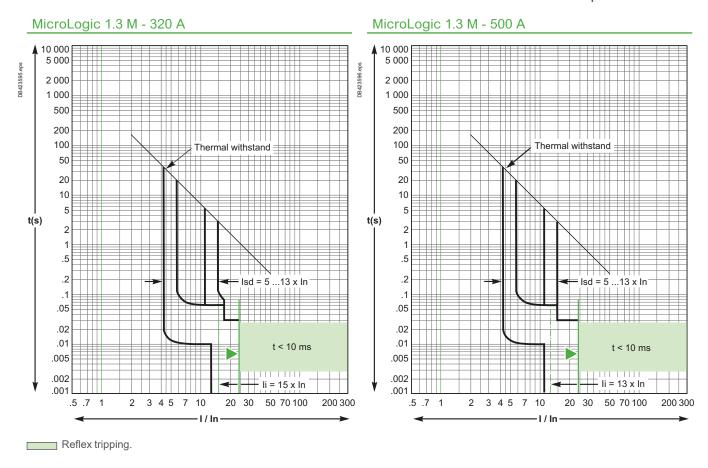
MicroLogic 5.3 and 6.3 A or E and 7.3E (up to 570 A) - 630 A

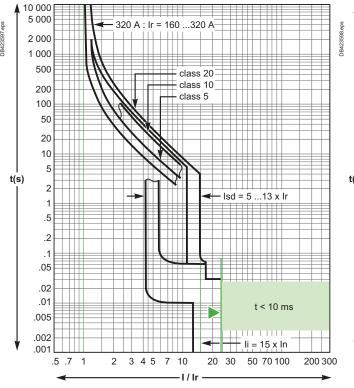


Reflex tripping.

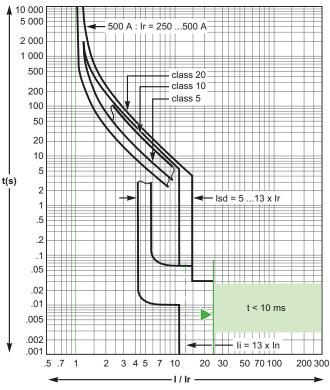
Н

Additional characteristics **ComPact NSX400 to 630** MicroLogic 6.3 A or E and 7.3 E electronic trip units, tripping curves - Protection of distribution systems

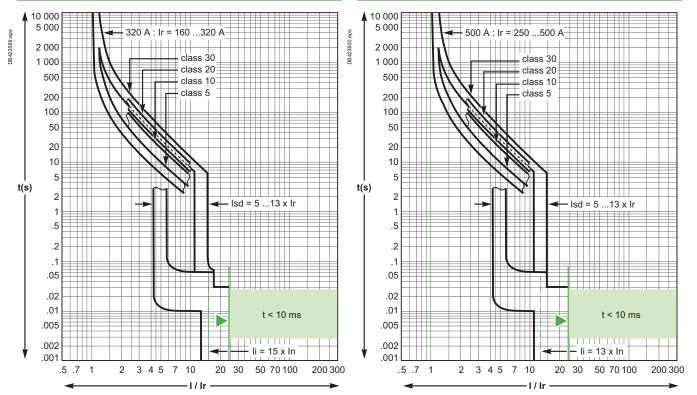

MicroLogic 6.3 A or E and 7.3 E (up to 570 A) (ground-fault protection)


Η

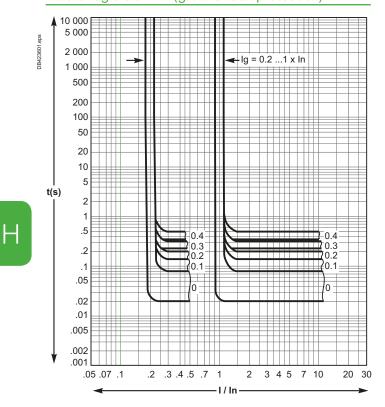
ComPact NSX400 to 630


MicroLogic 1.3 M and 2.3 M electronic trip units, tripping curves Motor protection

MicroLogic 2.3 M - 320 A

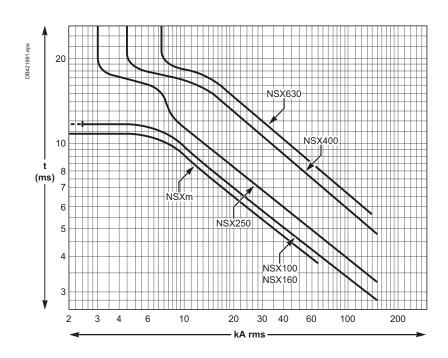

MicroLogic 2.3 M - 500 A

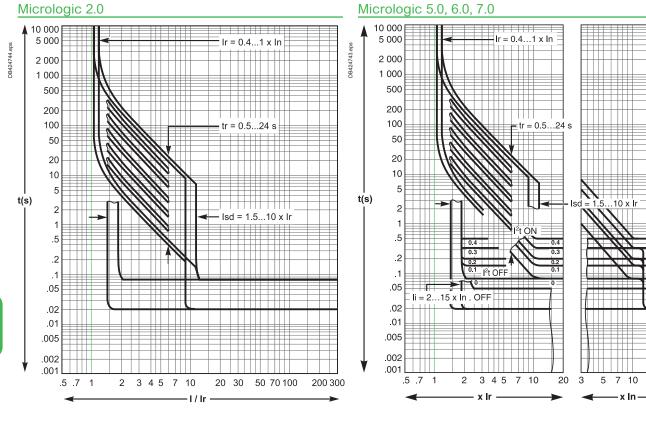
Reflex tripping.


Additional characteristics **ComPact NSX400 to 630** MicroLogic 6.3 E-M electronic trip units, tripping curves Motor protection

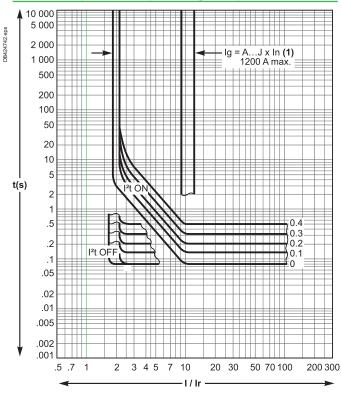
MicroLogic 6.3 E-M - 320 A

MicroLogic 6.3 E-M - 500 A


Reflex tripping.


MicroLogic 6.3 E-M (ground fault protection)

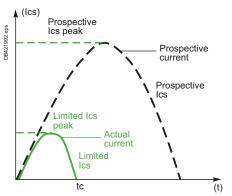
Additional characteristics Tripping curves ComPact NSXm and NSX Reflex tripping


ComPact NSXm and NSX100 to 630 devices incorporate the exclusive reflex-tripping system. This system breaks very high fault currents. The device is mechanically tripped via a "piston" actuated directly by the pressure produced in the breaking units by the short-circuit. For high short-circuits, this system provides a faster break, thereby ensuring selectivity. Reflex-tripping curves are exclusively a function of the circuit-breaker rating.

Micrologic electronic control units

Earth-fault protection (Micrologic 6.0)

[1]									
lg = ln x	Α	В	С	D	E	F	G	н	J
ln < 400 A	0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
400 A ≤ In ≤ 1200 A	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
ln > 1200 A	500	640	720	800	880	960	1040	1120	1200


20 30

E-2 Life Is On Schneider

Ε

Additional characteristics Current and energy limiting curves

The limiting capacity of a circuit breaker is its aptitude to let through a current, during a short-circuit, that is less than the prospective short-circuit current.

The exceptional limiting capacity of the ComPact range is due to the rotating double-break technique (very rapid natural repulsion of contacts and the appearance of two arc voltages in-series with a very steep wave front).

Ics = 100 % Icu

The exceptional limiting capacity of the ComPact NSX and NSXm ranges greatly reduces the forces created by fault currents in devices.

The result is a major increase in breaking performance.

In particular, the service breaking capacity Ics is equal to 100 % of Icu.

The Ics value, defined by IEC standard 60947-2, is guaranteed by tests comprising the following steps:

- break three times consecutively a fault current equal to 100 % of Icu
- check that the device continues to function normally, that is:
- □ it conducts the rated current without abnormal temperature rise
- □ protection functions perform within the limits specified by the standard
- □ suitability for isolation is not impaired.

Longer service life of electrical installations

Current-limiting circuit breakers greatly reduce the negative effects of short-circuits on installations

Thermal effects

Mechanical effects

Less temperature rise in conductors, therefore longer service life for cables.

Reduced electrodynamic forces, therefore less risk of electrical contacts or busbars being deformed or broken.

Electromagnetic effects

Fewer disturbances for measuring devices located near electrical circuits.

Economy by means of cascading

Cascading is a technique directly derived from current limiting. Circuit breakers with breaking capacities less than the prospective short-circuit current may be installed downstream of a limiting circuit breaker. The breaking capacity is reinforced by the limiting capacity of the upstream device. It follows that substantial savings can be made on downstream equipment and enclosures.

Current and energy limiting curves

The limiting capacity of a circuit breaker is expressed by two curves which are a function of the prospective short-circuit current (the current which would flow if no protection devices were installed):

the actual peak current (limited current)

thermal stress (A²s), i.e. the energy dissipated by the short-circuit in a conductor with a resistance of 1 Ω .

Example

What is the real value of a 70 kA rms prospective short-circuit (i.e. 100 kA peak) limited by an NSXm160H upstream ? The answer is 20 kA peak.

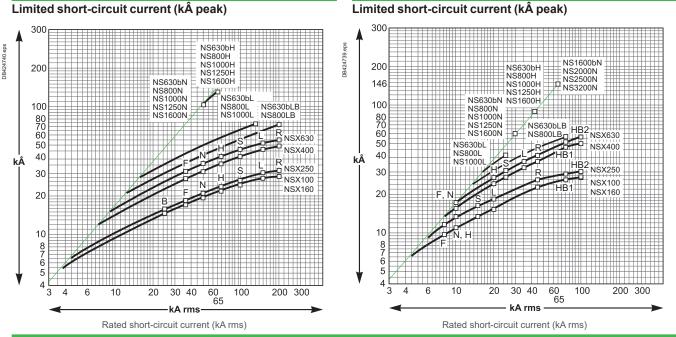
Maximum permissible cable stresses

The table below indicates the maximum permissible thermal stresses for cables depending on their insulation, conductor (Cu or AI) and their cross-sectional area (CSA). CSA values are given in mm² and thermal stresses in A²s.

CSA		1.5 mm ²	2.5 mm ²	4 mm ²	6 mm ²	10 mm ²
PVC	Cu	2.97x10 ⁴	8.26x10 ⁴	2.12x10⁵	4.76x10⁵	1.32x10 ⁶
	AI					5.41x10⁵
PRC	Cu	4.10x10 ⁴	1.39x10⁵	2.92x10⁵	6.56x10⁵	1.82x10 ⁶
	AI					7.52x10⁵
CSA		16 mm ²	25 mm ²	35 mm²	50 mm²	
PVC	Cu	3.4x10 ⁶	8.26x106	1.62x10 ⁷	3.31x10 ⁷	
	AI	1.39x10 ⁶	3.38x10 ⁶	6.64x10 ⁶	1.35x10 ⁷	
PRC	Cu	4.69x10 ⁶	1.39x10 ⁷	2.23x10 ⁷	4.56x10 ⁷	
	AI	1.93x10 ⁶	4.70x10 ⁶	9.23x10 ⁶	1.88x10 ⁷	

Example

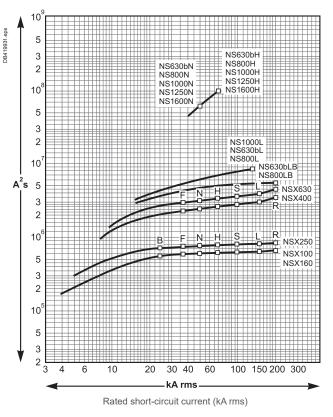
Is a Cu/PVC cable with a CSA of 10 mm² adequately protected by an NSX160F? The table above indicates that the permissible stress is 1.32x10⁶ A²s.


All short-circuit currents at the point where an NSX160F (Icu = 35 kA) is installed are limited with a thermal stress less than 6x10⁵ A²s.

Cable protection is therefore ensured up to the limit of the breaking capacity of the circuit breaker.

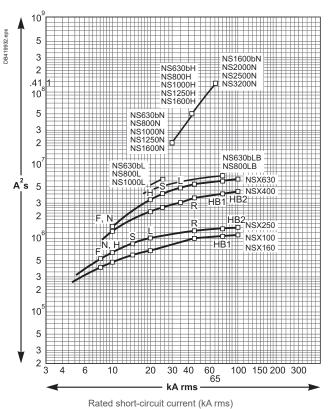
Additional characteristics Current-limiting curves

Current-limiting curves



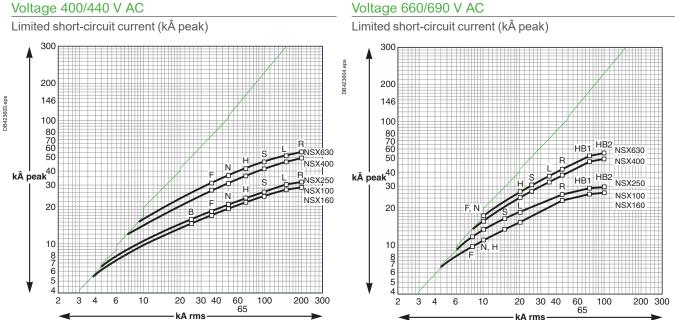
Thermal-stress curves

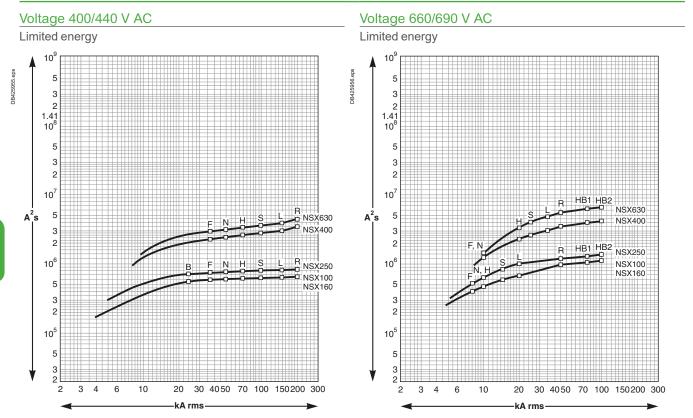
Voltage 400/440 V AC [1]


Limited energy

Voltage 660/690 V AC

Voltage 660/690 V AC


Limited energy


Additional characteristics Current and energy limiting curves ComPact NSX

Current-limiting curves

Energy-limiting curves

