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The singularities of the third harmonic

In installations where the neutral is distributed, non-linear loads may cause
significant overloads in this conductor due to the presence of the third
harmonic.
Both the phenomenon and its remedies are explained in this
“Cahier Technique”.
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1 Origin of harmonics

1.1 Current drawn by non-linear loads

Harmonic currents are generated by non-linear
loads, ie. loads which draw a current with a
different form from the voltage which powers
them. The most common loads of this type are
those based on rectifier circuits.

A typical non-linear load, such as that shown in
figure 1, draws a current containing all harmonic
orders, both odd and even. The appearance of
the current drawn, which has two different
half-waves, and its harmonic spectrum are
shown in figures 2 and 3.

1.2 Symmetrical non-linear loads

However, the majority of loads connected to the
network are symmetrical, ie. the current
half-waves are equal and opposing. This can be
expressed mathematically by the equation:

f t +   =  f tω π ω( ) − ( )
In this case, the even order harmonics are
zero. Assuming that the current includes a
second order harmonic, it is possible to write, for
example:

I I Iω ω ωt 21 2 sin  sin t +  t( ) =  

Fig. 3: Spectrum of the current drawn

This gives:

I I Iω π ω π ω πt +  t +  t +  1 2 sin  sin 2( ) = ( ) ( )+    

I I Iω π ω ωt +  t 2 t1 2 sin  sin( ) = − +   

This can only be equal to − ( )I ωt  if I2

(magnitude of the second harmonic) is zero.

This reasoning can be extended to all even
order harmonics.

Fig. 2: Appearance of the current drawn

Fig. 1: Example of a typical non-linear load
(non-symmetrical)
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1.3 3-phase loads

Consider a symmetrical, balanced, non-linear
3-phase load without neutral connection, as
shown in figure 4.
Assuming that the currents drawn by this load
include the third harmonic, the third order
harmonic currents of each phase can be written
as follows:

i  sin 3 t r3   = I3 ω

i  sin 3 t 
2
3

 sin 3 t 2 i  s3 r3        = −



 = −( ) =I I3 3ω π ω π

i  sin 3 t 
4
3

 sin 3 t 4 i  t3 r3        = −



 = −( ) =I I3 3ω π ω π

i i  =  i  r3 s3 t3  =

The third order harmonic currents of all three
phases are therefore equal.
However, if there is no neutral conductor,
ir +  is +  it =  0.
The sum of the third order harmonic currents in
particular should be zero, which is only possible
if each of the components is zero.

Symmetrical, balanced, 3-phase loads do not
therefore generate a third harmonic.

This reasoning can be extended to all harmonic
orders which are multiples of 3.
Harmonic currents which are not zero are
therefore of the order 5, 7, 11, 13, etc, ie. they
take the form 6k ± 1.

This can be demonstrated for any system
incorporating rectifiers, whether controlled or
not. We can therefore demonstrate that
harmonic orders are written h = (nxp) ± 1, where
n is an integer (1, 2, 3, 4, 5, etc) and p the
number of rectifiers which make up the device.
For example, a circuit which only includes one
rectifier (half-wave rectification) has harmonics
of the order n ± 1 and presents all possible
harmonics, starting with 0 which is the direct
current.
For a bridge consisting of 4 diodes, the first
harmonic is of order 3, as demonstrated in
section 1.2.

This result is illustrated by the diagram
consisting of a diode rectifier with capacitive
filtering (see fig. 5), where the current drawn is
represented by the curve in figure 6 and its
spectrum in figure 7.

Fig. 5: 3-phase rectifier bridge with capacitive filtering

Fig. 6: Appearance of the current drawn by the circuit
in figure 5

Fig. 7: Harmonic spectrum of the current drawn by the
circuit in figure 5
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This diagram is currently used for variable speed
drives, uninterruptible power supplies and
induction heating systems. The appendix

contains Fourier coefficient calculations for
determining the magnitudes of harmonics in the
current drawn by an ideal 3-phase rectifier.

1.4 Single-phase loads

Remember that symmetrical loads do not
generate even order harmonics (see
section 1.2). As the spectrum is generally
decreasing, the third harmonic is therefore the
dominant harmonic for single-phase loads. Also,
for very common loads such as a single-phase
diode rectifier with capacitive filtering (see fig. 8),
the third harmonic can be as much as 80% of the
fundamental. The waveform of the current which

these loads draw and its harmonic spectrum are
represented by figures 9 and 10.
Numerous appliances, in all spheres of activity,
contain a circuit of this type (see fig. 11). These
are the main generators of third harmonics.

Fig. 8: Single-phase rectifier with capacitive filtering

Fig. 9: Appearance of the current drawn by the
diagram in figure 8

Fig. 11: Some examples of appliances containing a
single-phase rectifier with capacitive filtering

Fig. 10: Harmonic spectrum of the current drawn by
the diagram in figure 8
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2 Overload on the neutral conductor

2.1 Third harmonics and multiples of 3

Consider a simplified system consisting of a
balanced 3-phase source and three identical
single-phase loads, connected between phase
and neutral (see fig. 12).

Fig. 12: Single-phase loads

If the loads are linear, the currents constitute a
balanced 3-phase system. The sum of the phase
currents is therefore zero, as is the neutral
current.

in     = =∑ ii 0

If the loads are non-linear, the phase currents
are non-sinusoidal and therefore contain
harmonics, particularly of orders which are
multiples of 3.
Since all three-phase currents are equal, the
third order harmonic currents, for example, have
the same magnitude and can be written as:

i  sin 3 t  r3   = ( )I3 ω

i  sin 3 t 
2
3

 sin 3 t 2 i  s3 r3        = −



 = −( ) =I I3 3ω π ω π

i  sin 3 t 
4
3

 sin 3 t 4 i  t3 r3        = −



 = −( ) =I I3 3ω π ω π

In this simplified example, the third order
harmonic currents in all 3 phases are
therefore identical.

Since the current in the neutral is equal to the
sum of the currents in the phases, the component
of order 3 of the neutral current is equal to the
sum of the components of order 3, ie:

in  =  3ir  3 3

As a general rule, for balanced loads, harmonic
currents of orders which are a multiple of 3 are in
phase and are added up arithmetically in the
neutral conductor, while the fundamental
components and harmonics of orders which are
not multiples of 3 cancel one another out.

Third order harmonic currents are therefore
zero-sequence currents, circulating in phase
in all three phases.

Reasoning based on graphic representation
ccccc Superimposition of third harmonics
Figure 13 shows three 3-phase sinusoidal
currents at 50 Hz and three sinusoidal currents
at 150 Hz, each in phase with one of the
currents at 50 Hz. These three currents are
equal and are therefore superimposed.

Fig. 13: 3-phase currents at 50 Hz and 150 Hz drawn
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2.2 Calculating the rms value of the neutral current

ccccc Appearance of the current in the neutral
Figure 14 shows the currents circulating in the
phases of three identical non-linear single-phase
loads connected between phase and neutral,
and also the resulting current in the neutral
conductor.

Fig. 14: Phase and neutral currents supplying
non-linear single-phase loads

Fig. 15: Spectrum of the phase current supplying
non-linear single-phase loads

Fig. 16: Spectrum of the neutral current drawn by
non-linear single-phase loads

The spectrums for these currents are shown in
figures 15 and 16. Note that the neutral current
only contains odd order components which are
multiples of 3 (3, 9, 15, etc), whose magnitudes
are three times greater than those of the phase
currents.

Let us assume, as shown in figure 14, that the
current waves of the three phases do not
overlap.

For a period T of the fundamental, a phase
current consists of a positive wave and a
negative wave separated by an interval where
the current is zero.

The rms value of the line current can be
calculated using the formula:

I IL
T

T
  = ∫1

0
i dt2

The rms value of the neutral current can be
calculated over an interval equal to T/3.
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During this interval, the neutral current also
consists of a positive wave and a negative wave,
identical to those of the phase current. The rms
value of the neutral current can therefore be
calculated as follows:

IN
T

T
  

/
 

/
= ∫1

3 0

3
in

2  dt

IN
T

T
   

/
= ∫3

1
0

3
 i  dt n

2

I IIN
T

T
     = =∫3

1
0

 i  dt 32
L

Here, therefore, the current in the neutral

conductor has an rms value 3 times greater
than that of the current in a phase.

When the current wave of all three phases
overlaps, as in the example in figure 17, the rms
value of the current in the neutral is less than

3 times the rms value of the current in a phase
(see fig. 18).

In installations where a large number of
non-linear loads, such as switch mode power
supplies for computer equipment, the current in
the neutral may therefore exceed the current in
each phase. This situation, although rare,
requires the use of a reinforced neutral
conductor.

The most commonly adopted solution consists
of using a neutral conductor with a cross-
section which is double that of the phase
conductors. The protection and control
equipment (circuit-breaker, switches,
contactors, etc) should be sized according to
the current in the neutral.

Fig. 17: Currents in all 3 phases

Fig. 18: Current in the neutral

2.3 Overload on the neutral conductor as a function of current distortion

Balanced loads
Considering that the third harmonic is the
dominant harmonic, the distortion factor is very
close to the third harmonic ratio. So:

THD =  i3   (%)

Moreover, as indicated in 2.1, the current in the
neutral IN is very close to 3 3I . So:

I IN 3  3 ≈   (A)

This can be expressed as:

I I IN 3 1 1  3 i    3 THD ≈ ≈

Using the general formula:

I
I

1 =  
1 + THD

L
2

we can obtain:

I
I

I
I

N

N

  3  
1 +

  
3 THD

1 +

L
2

L 2

≈

⇒ ≈

THD
THD

THD

This approximate formula is only valid when the

result is less than 3 . The loading of the neutral
current therefore varies as a function of the
distortion factor as shown in the following graph
(see fig. 19).

Fig. 19: Loading of the neutral current (balanced
loads)
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Unbalanced loads:

Consider the simplified system consisting of a
balanced 3-phase source and two identical
single-phase loads, connected between phase
and neutral (see fig. 20).

We can demonstrate, in the same way as in 2.2,
that the maximum value of the neutral current
cannot exceed 2  times the current in each
phase.

If we only consider the fundamental current and
the third order harmonic current of each of the
loads, the current in the neutral is the sum of a
fundamental current and a third order harmonic
current:

c The fundamental current is the vector sum of
the fundamental currents in both loads. Since
these currents are equal and phase-shifted by
120°, the resulting current is equal to the
fundamental current of each of the loads.

c The third order harmonic current is the sum of
all the third order harmonic currents (these are
all in phase).

Fig. 20: Unbalanced loads

Fig. 21: Loading of the neutral current (unbalanced
loads)

The rms current in the neutral is therefore equal
to:

I I IN 1
2

3
2   +  (2  )  ≈

Using the same formulae as before, we get:

I I IN 1
2

1
2   +  (2 THD  )  ≈

I IN 1 
2  1 +  4 THD  ≈

I
I

N
L

2

2  
 +  THD

 1 +  4 THD   ≈
1

⇒ ≈
I
I
N

L

2

2
  

1 +  4 THD  

 +  THD1

This approximate formula is only valid as long as

the result is less than 2 . The loading of the
neutral current therefore varies as a function of
the distortion factor as shown in the following
graph (see fig. 21).
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3 The third harmonic in transformers

3.1 Star-delta transformer

Consider a star-delta transformer, supplying
identical non-linear loads connected between
phase and neutral (see fig. 22). Each of these
loads generates a third order harmonic current.
Remember that these currents (I3), containing
third order harmonics, are equal.

Third order harmonic currents in the transformer
primary windings are also therefore identical to
one another, and are noted I'3.

In each node of the primary delta, the third
harmonic currents compensate for one another,
and the current in the line therefore contains no
third harmonics.

Third order harmonic currents are not therefore
transmitted to the network. Instead, these
currents circulate in the transformer primary
windings and therefore cause an additional
temperature rise.

Fig. 22: Third order harmonic currents in a star-delta
transformer

3.2 Transformer with zigzag secondary

Consider a transformer with zigzag secondary,
supplying identical non-linear loads connected
between phase and neutral (see fig. 23). Each of
these loads generates a third order harmonic
current (marked I3 in the diagram). Remember
that these third order harmonic currents are equal.

Fig. 23: Third order harmonic currents in a transformer with zigzag secondary

It is easy to see from this diagram that the
ampere-turns on a single core at the secondary
cancel one another out. As a result, there are no
third order harmonic currents circulating at the
primary.

I'3
I3

I3

I3I'3

I'3

Primary Secondary

I3

I3

I3

I3

I3

I3

Primary Secondary
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4.4 Reactance with zigzag connection

The schematic for this reactance is illustrated
in figure 24.

As in the case of a zigzag transformer, it is
easy to see from this figure that the
ampere-turns on a single core cancel one
another out. As a result, the impedance seen
by the third order harmonic currents is very low
(leakage inductance for the winding only). The

zigzag reactance obtains a low-impedance
return path with zero-sequence currents and
third order (and multiples of 3) harmonic
currents. It therefore reduces the current In
circulating in the power supply neutral, as
illustrated below in the case of single-phase
loads (see also figure 14). Figure 25 shows
the attenuation obtained.

Switch mode power supplies and fluorescent
lighting with electronic ballast are increasingly
common in service sector installations. The high
percentage of third harmonics in this type of load
can have a significant impact on the capacity of
the neutral conductor.

In an office block, the current in the neutral
conductor can reach 1.4 to 1.7 times the current
in a phase.
Several types of device can be used to eliminate
the effects of third order harmonic currents.

4.1 Adapting the installation

The main solutions to overload on the neutral
conductor are as follows:

c Use a separate neutral conductor for each
phase.

c Double the neutral conductor rating.

4.2 Star-delta transformer

As explained in section 3.1, third order harmonic
currents circulating in the secondary of a
star-delta transformer are not transmitted to the
transformer power supply line. This arrangement
is commonly used in distribution, which avoids
the circulation of third order harmonic currents in
distribution and transmission networks.

Given that the current in the neutral cannot
exceed 1.7 times the current in each phase, this
is a simple technological solution to avoid
overload on the neutral conductor.

Note that third order harmonic currents are only
totally eliminated if the loads are perfectly
balanced. Otherwise, the third order harmonic
currents of the 3 phases are not equal and do
not totally compensate for one another at the
vertices of the triangle.

4.3 Transformer with zigzag secondary

According to the explanation given in section
3.2, third order harmonic currents circulating in
the secondary of a transformer with zigzag
secondary are not transmitted to the primary
windings.
This arrangement is frequently used, even
though the composition of the transformer is
much bulkier than that of a star-delta
transformer.

Here too, it should be noted that third order
harmonic currents are only totally eliminated if
the loads are perfectly balanced. Otherwise, the
third order harmonic currents of the 3 phases
are not equal, and compensation of the
ampere-turns on a single core at the secondary
is not total. A third order harmonic current can
then also circulate in the primary winding, and
therefore in the power supply line.

4 Remedies
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4.5 Third order filter in the neutral

The principle of this device consists of placing a
trap circuit tuned to the third harmonic in series
with the neutral conductor (see fig. 26).

Figures 27 to 32 illustrate the waveforms
obtained, assuming that single-phase loads of

Fig. 24: Zigzag reactance

Fig. 26: Third order filter in the neutral Fig. 28: Neutral current without filter

Fig. 25 : Difference in magnitude of the neutral current
with and without use of a zigzag reactance

Fig. 29: Simple voltage without filterFig. 27: Line current without filter

the type described in section 1.4 are connected
between phase and neutral.

The following are shown in succession: the
phase current, the neutral current, the phase-
neutral voltage, both with and without filter.

A significant reduction in the current in the
neutral conductor is observed, to the detriment of
a high voltage distortion applied to the voltage
between phase and neutral.
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Fig. 30: Line current with filter

Fig. 31: Neutral current with filter

Fig. 32: Simple voltage with filter

4.6 Filtering devices

c Place a passive filter tuned to the third order
harmonic close to the non-linear loads
(see fig. 33).

Note that this solution requires relatively bulky
components, given the low tuning frequency.

ccccc Use an active compensator placed close to the
non-linear loads (see fig. 34).

Note that this type of device has the capacity to
compensate a harmonic current in the neutral
whose magnitude is three times that of the
phase current.

Example: Harmonic current per phase 30 A
Neutral harmonic current 90 A

c Hybrid filter (see fig. 35): association of an
active compensator which will eliminate the third
harmonics and a passive filter which will
eliminate the dominant harmonics (5 and 7 for
example)

Fig. 33: Third order passive filter

Fig. 34: Active filter

Fig. 35: Hybrid filter
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Fig. 37: Power supply current
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cos 5n
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 =  cos n  n
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=  cos n  cos n
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  sin n  sin n
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=  1  cos n
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π π π

π π
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And therefore:

b  =  
2 

 n
cos n

6
  1  cos n

6n
dc nI

π
π π





− −( ) 















b  =  
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 n
cos n

6
  1  cos n

6n
dc n+1I

π
π π





− −( ) 



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









If n is even: b  =  n 0

If n is odd: b  =  
4 

 n
 cos n

6n
dcI

π
π





If n π/ 6 is an odd multiple of π / 2 , then

b  =  n 0

In other words, for n
6

2k  1  
2

π π
  = +( )

Hence: n = 3 (2k + 1)

Put in different terms, if n is an odd multiple of 3,
the terms bn are zero.

The only non-zero terms are therefore of the form:

b  =  
2 3 

n
 1n

dcI
π −( )m

where n =  6m  1, m =  0, 1, 2, ...±

In particular, we get:

b  =  
2 3 

1
dcI

π
The rms value of the fundamental is therefore:

I
I

1 dc=  
6 

π

The rms value of the non-zero harmonics is
equal to:

I
I

n 1=  
n

Appendix: Calculating Fourier coefficients for a
rectangular current

Consider the simplified schematic (see fig. 36)
for a controlled rectifier, supplying an ideal load,
and the current in each of the power supply
phases (see fig. 37).

This function can be expressed in the form of a
Fourier series:

I nt a  cos n t b  sin n tn
n  1

( ) = ( ) + ( )
=

∞
∑    ω ω

Since the function is odd, all the coefficients an
are zero.

The coefficients bn can be calculated using the
equation:

b  sin n t  d  tn   = ( ) ( )∫2
0π

ω ωπ
I t

b
2 

sin t  d  tn
dc   = ∫ ( )I

π
ω ωπ

π

6

5
6 n

b
2 

 n
cos n tn

dc   = − ( )[ ]I
π

ω π

π

6

5
6

b
2 

 n
cos n

6
cos 5n

6n
dc    =







−



















I
π

π π

Fig. 36: Controlled rectifier supplying a load which
draws a perfectly smooth current
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